12x16x23 - Frames: 284T-365TS
Bell & Gossett Series HSCS
Base Mounted - Double Suction Centrifugal Pumps

SPECIFICATIONS:

<table>
<thead>
<tr>
<th>GPM</th>
<th>FT.</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOTOR DATA:

<table>
<thead>
<tr>
<th>HP</th>
<th>VOLTS</th>
<th>ENCL</th>
<th>HZ</th>
<th>PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPEC. CONSTR.:

<table>
<thead>
<tr>
<th>APPROX. WEIGHT</th>
<th>LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIALS OF CONSTRUCTION

- CAST IRON BRONZE FITTED
- FABRICATED HEAVY DUTY
- OSHA COUPLING GUARD
- ALL METAL GEAR TYPE COUPLING
- GALVANIZED DRIP PAN UNDER FLANGES (OPTIONAL)

TYPE OF SEAL

- STANDARD: 175 PSIG (12 Bar) working pressure, **125# ANSI Flange Configuration
- OPTIONAL: 300 PSIG (21 bar) working pressure, ***250# ANSI Flange Configuration
- STANDARD: Crane Type 8-1, Viton/Carbon Ceramic, 75 psig (5 Bar) maximum suction pressure, from -10°C to 220°F (-12°C to 104°C).
- OPTIONAL: Crane Type 8-1, Viton/Carbon Tungsten Carbide, 75 psig (5 Bar) maximum suction pressure, from -10°C to 220°F (-12°C to 104°C).
- OPTIONAL: Crane Type 8B-1, Viton/Carbon-Ceramic, 200 PSIG (13 Bar) maximum suction pressure, from -10°C to 220°F (-12°C to 104°C).

OTHER:

1200 RPM PUMP CURVES

Minimum recommended flow is 30% B.E.P.
12x16x23 - Frames: 284T-365TS
Bell & Gossett Series HSCS
Base Mounted - Double Suction Centrifugal Pumps

SPECIFICATIONS:

- GPM
- FT.
- RPM

MOTOR DATA:
- HP
- VOLTS
- ENCL
- HZ
- PHASE

SPEC. CONSTR.:
- APPROX. WEIGHT
- LBS.

MATERIALS OF CONSTRUCTION:
- CAST IRON BRONZE FITTED
- FABRICATED HEAVY DUTY
- OSHA COUPLING GUARD
- ALL METAL GEAR TYPE COUPLING
- GALVANIZED DRIP PAN UNDER FLANGES (OPTIONAL)

TYPE OF SEAL

- STANDARD: 175 PSIG (12 Bar) working pressure, **125# ANSI Flange Configuration
- OPTIONAL: 300 PSIG (21 bar) working pressure, ***250# ANSI Flange Configuration
- STANDARD: 300 PSIG (21 bar) working pressure, from -10°F to 220°F (-23 °C to 104 °C)
- OPTIONAL: Crane Type 8-1, Viton/Carbon Ceramic, 75 psig (5 Bar) maximum suction pressure, from -10°F to 220°F (-23 °C to 104 °C)
- OPTIONAL: Crane Type 8B-1, Viton/Carbon Ceramic, 200 PSIG (13 Bar) maximum suction pressure, from -10°F to 220°F (-23 °C to 104 °C)
- OTHER:
12x16x23 - Frames: 284T-365TS
Bell & Gossett Series HSCS
Base Mounted - Double Suction Centrifugal Pumps

SPECIFICATIONS:

- GPM
- FT.
- RPM
- HP
- VOLTS
- ENCL
- HZ
- PHASE

MATERIALS OF CONSTRUCTION:
- CAST IRON BRONZE FITTED
- FABRICATED HEAVY DUTY
- OSHA COUPLING GUARD
- ALL METAL GEAR TYPE COUPLING
- GALVANIZED DRIP PAN UNDER FLANGES (OPTIONAL)

1800 RPM PUMP CURVES

PERFORMANCE FOR NON OVERLOADING WITH A 1.0 S.F.

NOTE: 17-4 PH shaft material is standard at this speed.
12x16x23 - Frames: 284T-365TS
Bell & Gossett Series HSCS
Base Mounted - Double Suction Centrifugal Pumps

Specifications:

<table>
<thead>
<tr>
<th>GPM</th>
<th>FT.</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Motor Data:
- **HP**
- **VOLTS**
- **ENCL**
- **HZ**
- **PHASE**

Spec. Constr.:
- **Approx. Weight**
- **Lbs.**

Materials of Construction:
- [] Cast Iron Bronze Fitted
- [] FABRICATION HEAVY DUTY
- [] OSHA Coupling Guard
- [] All Metal Gear Type Coupling
- [] Galvanized Drip Pan Under Flanges (Optional)

Type of Seal

- **Standard:** 175 PSI (12 Bar) working pressure, **125# ANSI Flange Configuration**
- **Optional:** 300 PSI (21 Bar) working pressure, ***250# ANSI Flange Configuration**
- **Optional:** Crane Type 8-1, Viton/Carbon Ceramic, 75 psig (5 Bar) maximum suction pressure, from -10° to 220°F (-23 °C to 104 °C).
- **Optional:** Crane Type 8-1, Viton/Carbon Tungsten Carbide, 75 psig (5 Bar) maximum suction pressure, from -10° to 220°F (-23 °C to 104 °C).
- **Optional:** Crane Type 8B-1, Viton/Carbon-Ceramic, 200 PSI (13 Bar) maximum suction pressure, from -10° to 220°F (-23 °C to 104 °C).
- **Other:**

Diagram:

[Diagram of pump specifications and performance data]

xylem
Let's Solve Water
DIMENSIONS - Inches (mm)

<table>
<thead>
<tr>
<th>MOTOR FRAME</th>
<th>HA</th>
<th>HB</th>
<th>2HE</th>
<th>HF₁</th>
<th>HF₂</th>
<th>HG</th>
<th>HP</th>
<th>HR</th>
<th>CP</th>
<th>HC*</th>
<th>HD</th>
<th>HM*</th>
<th>HO</th>
<th>S & Z</th>
<th>VH</th>
<th>VH₁</th>
<th>W</th>
<th>X</th>
<th>YY</th>
</tr>
</thead>
<tbody>
<tr>
<td>284T</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>284TS</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>286T</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>286TS</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>324T</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>324TS</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>326T</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>326TS</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>364T</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>364TS</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>365T</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
<tr>
<td>365TS</td>
<td>27</td>
<td>(686)</td>
<td>72</td>
<td>(1629)</td>
<td>25.76</td>
<td>60</td>
<td>(1524)</td>
<td>30</td>
<td>(762)</td>
<td>6</td>
<td>(152)</td>
<td>.75</td>
<td>(19)</td>
<td>6</td>
<td>(152)</td>
<td>7.75</td>
<td>(197)</td>
<td>54.25</td>
<td>(1379)</td>
</tr>
</tbody>
</table>

*Motor dimensions are approximate, vary by manufacturer and motor type.

Dimensions are subject to change. Not to be used for construction purposes unless certified.

Bell & Gossett is a trademark of Xylem Inc. or one of its subsidiaries.

© 2014 Xylem Inc.