Model VSC
10x12x17½B
Double Suction Split Case Pump

SPECIFICATIONS
- FLOW
- HEAD
- HP
- RPM
- VOLTS
- CYCLE
- PHASE
- ENCLOSURE
- APPROX. WEIGHT
- SPECIALS

STANDARD MATERIALS OF CONSTRUCTION
- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE
- Standard: 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling. Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling. Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
Model VSC
10x12x17½B
Double Suction Split Case Pump

SPECIFICATIONS

FLOW ___________ HEAD ___________
HP ___________ RPM ___________
VOLTS ___________
CYCLE ___________ PHASE ___________
ENCLOSURE ___________
APPROX. WEIGHT ___________
SPECIALS ___________

STANDARD MATERIALS OF CONSTRUCTION
☐ Cast Iron Bronze Fitted
☐ Heavy Duty Maintenance Free Bearings
☐ Alignment Friendly Coupling
☐ Heavy Duty Groutless Baseplate
☐ ANSI/OSHA Coupling Guard
☐ ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
☐ Galvanized Drip Pan
☐ Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE
☐ Standard: 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
☐ Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
☐ Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
Model VSC
10x12x17½B
Double Suction Split Case Pump

SPECIFICATIONS

<table>
<thead>
<tr>
<th>FLOW</th>
<th>HEAD</th>
<th>HP</th>
<th>RPM</th>
<th>VOLTS</th>
<th>CYCLE</th>
<th>PHASE</th>
<th>ENCLOSURE</th>
<th>APPROX. WEIGHT</th>
<th>SPECIALS</th>
</tr>
</thead>
</table>

STANDARD MATERIALS OF CONSTRUCTION
- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE

- **Standard:** 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- **Optional:** 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- **Optional:** 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)

Diagram: Series VSX

<table>
<thead>
<tr>
<th>Total Head (ft)</th>
<th>Capacity (GPM)</th>
<th>Bell & Gossett 10x12x17½B 1480 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5"</td>
<td>175</td>
<td>150 HP</td>
</tr>
<tr>
<td>16.5"</td>
<td>160</td>
<td>125 HP</td>
</tr>
<tr>
<td>15.5"</td>
<td>140</td>
<td>100 HP</td>
</tr>
<tr>
<td>14.5"</td>
<td>120</td>
<td>50% 200 HP</td>
</tr>
<tr>
<td>13.5"</td>
<td>100</td>
<td>85% 150 HP</td>
</tr>
<tr>
<td>12.5"</td>
<td>55</td>
<td>85% 100 HP</td>
</tr>
<tr>
<td>11.5"</td>
<td>40</td>
<td>85% 75 HP</td>
</tr>
<tr>
<td>10.5"</td>
<td>30</td>
<td>85% 50 HP</td>
</tr>
</tbody>
</table>

Graph:
- **NPSH:** (ft) (m)
- **GPM:** (liters per second)
Model VSC
10x12x17½B
Double Suction Split Case Pump

SPECIFICATIONS
- FLOW
- HEAD
- HP
- RPM
- VOLTS
- CYCLE
- PHASE
- ENCLOSURE
- APPROX. WEIGHT
- SPECIALS

STANDARD MATERIALS OF CONSTRUCTION
- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE
- Standard: 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 160 PSIG (10.9 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
Model VSC 10x12x17½B Centrifugal Pump Submittal

<table>
<thead>
<tr>
<th>FLANGE DIMENSIONS</th>
<th>SIZE</th>
<th>THICKNESS</th>
<th>O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>10"</td>
<td>2.13 (54)</td>
<td>17 (432)</td>
</tr>
<tr>
<td>Suction</td>
<td>12"</td>
<td>2.25 (57)</td>
<td>20.25 (514)</td>
</tr>
</tbody>
</table>

FLANGES ARE 125# ANSI - STANDARD

250# ANSI - AVAILABLE

<table>
<thead>
<tr>
<th>DIMENSIONS IN INCHES (MM)</th>
<th>S</th>
<th>X</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(330)</td>
<td>22</td>
<td>13 (330)</td>
<td></td>
</tr>
</tbody>
</table>

Removal clearance from end of bracket: 30 inches (762 mm)

STANDARD COUPLER

*Motor dimensions are approximate and vary by manufacturer and motor type.

†† Distance to the next available hole.

<table>
<thead>
<tr>
<th>MOTOR FRAME</th>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC*</th>
<th>HD</th>
<th>2HE</th>
<th>HF 1</th>
<th>HF 2</th>
<th>HG</th>
<th>HH</th>
<th>HM*</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>365T/TS</td>
<td>42.12</td>
<td>41</td>
<td>91 (2311)</td>
<td>76.329 (1939)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>81 (2057)</td>
<td>20.25 (514)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>41.45 (1053)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>404T/TS</td>
<td>42.12</td>
<td>41</td>
<td>91 (2311)</td>
<td>79.43 (1981)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>81 (2057)</td>
<td>20.25 (514)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>41.97 (1066)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>405T/TS</td>
<td>42.12</td>
<td>41</td>
<td>91 (2311)</td>
<td>81.43 (2068)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>81 (2057)</td>
<td>20.25 (514)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>41.97 (1066)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>444T/TS</td>
<td>42.12</td>
<td>41</td>
<td>91 (2311)</td>
<td>86.896 (2207)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>81 (2057)</td>
<td>20.25 (514)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>47.02 (1194)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>445T/TS</td>
<td>42.12</td>
<td>41</td>
<td>91 (2311)</td>
<td>88.5 (2248)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>81 (2057)</td>
<td>20.25 (514)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>47.02 (1194)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>447T/TS</td>
<td>42.12</td>
<td>41</td>
<td>96 (2438)</td>
<td>94.98 (2412)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>86 (2184)</td>
<td>17.2 (437)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>45.38 (1153)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>449T/TS</td>
<td>42.12</td>
<td>41</td>
<td>96 (2438)</td>
<td>95.68 (2430)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>86 (2184)</td>
<td>17.2 (437)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>45.38 (1153)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>†† 5008MS</td>
<td>42.12</td>
<td>41</td>
<td>96 (2438)</td>
<td>91.5 (2324)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>86 (2184)</td>
<td>17.2 (437)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>46 (1186)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>†† 5010MS</td>
<td>42.12</td>
<td>41</td>
<td>95.5 (2426)</td>
<td>98 (2489)</td>
<td>33.88 (861)</td>
<td>38 (965)</td>
<td>86 (2184)</td>
<td>21.5 (546)</td>
<td>9.38 (238)</td>
<td>1.375 (35)</td>
<td>48.38 (1168)</td>
<td>55.88 (1419)</td>
<td>4.75 (121)</td>
<td>4 (381)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>†† 5007S</td>
<td>42.12</td>
<td>41</td>
<td>107 (2718)</td>
<td>101.62 (2581)</td>
<td>33.88 (861)</td>
<td>38 (965)</td>
<td>97 (2464)</td>
<td>24.25 (616)</td>
<td>9.38 (238)</td>
<td>1.375 (35)</td>
<td>49.44 (1256)</td>
<td>55.88 (1419)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>†† 5009S</td>
<td>42.12</td>
<td>41</td>
<td>107 (2718)</td>
<td>108.62 (259)</td>
<td>33.88 (861)</td>
<td>38 (965)</td>
<td>97 (2464)</td>
<td>24.25 (616)</td>
<td>9.38 (238)</td>
<td>1.375 (35)</td>
<td>49.44 (1256)</td>
<td>55.88 (1419)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>†† 5011S</td>
<td>42.12</td>
<td>41</td>
<td>107 (2718)</td>
<td>116.62 (2962)</td>
<td>33.88 (861)</td>
<td>38 (965)</td>
<td>97 (2464)</td>
<td>24.25 (616)</td>
<td>9.38 (238)</td>
<td>1.375 (35)</td>
<td>49.44 (1256)</td>
<td>55.88 (1419)</td>
<td>5 (127)</td>
<td>5 (375)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions are subject to change. Not to be used for construction purposes unless certified.

Units may be built where foot/feet overhang the motor mounting platform. If overhang is unacceptable, consult factory for a custom submittal, quotation and/or lead time. A certified motor drawing will be required.

† For all customer supplied motors above 449 NEMA frame, a certified motor drawing must be supplied by the customer at the time of order entry.

‡ Submittal dimensions for motor frames above 449 NEMA are specific to ODP U.S. Electric Motors Only.
Model VSC 10x12x17½B Centrifugal Pump Submittal

FLANGE DIMENSIONS IN INCHES (MM)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>THICKNESS</th>
<th>O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10"</td>
<td>2.13 (54)</td>
<td>17 (432)</td>
</tr>
<tr>
<td>12"</td>
<td>2.25 (57)</td>
<td>20.25 (514)</td>
</tr>
</tbody>
</table>

FLANGES ARE 125# ANSI - STANDARD

250# ANSI - AVAILABLE

<table>
<thead>
<tr>
<th>S</th>
<th>X</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>22</td>
<td>13</td>
</tr>
</tbody>
</table>

(330) (559) (330)

Removal clearance from end of bracket: 30 inches (762 mm)

SPACER COUPLER

*Motor dimensions are approximate and vary by manufacturer and motor type.

"Distance to the next available hole.

DIMENSIONS IN INCHES (MM)

FOR SPACER COUPLER

<table>
<thead>
<tr>
<th>MOTOR FRAME</th>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC*</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2*</th>
<th>HG</th>
<th>HH</th>
<th>HM*</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>365T/TS</td>
<td>42.12</td>
<td>41</td>
<td>96 (2438)</td>
<td>89.329</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>86 (2184)</td>
<td>17.2 (437)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>41.45 (1053)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>404T/TS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>91.93</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>41.97 (1066)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>405T/TS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>93.93</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>41.97 (1066)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>444T/TS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>99.396</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>47.02 (1194)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>445T/TS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>101 (2565)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>47.02 (1194)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>447T/TS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>107.48 (2730)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>45.38 (1153)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>449T/TS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>108.18 (2748)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>45.38 (1153)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>† ‡ 5008MS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>106.6 (2642)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>46 (1168)</td>
<td>53.5 (1359)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>† ‡ 5010MS</td>
<td>42.12</td>
<td>41</td>
<td>105 (2667)</td>
<td>106.6 (2642)</td>
<td>31.5 (800)</td>
<td>39.12 (994)</td>
<td>95 (2413)</td>
<td>19 (483)</td>
<td>7 (178)</td>
<td>1.13 (29)</td>
<td>48.38 (1168)</td>
<td>55.88 (1419)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>† ‡ 5807S</td>
<td>42.12</td>
<td>41</td>
<td>118 (2997)</td>
<td>114.12 (2907)</td>
<td>33.88 (861)</td>
<td>38 (965)</td>
<td>98 (2489)</td>
<td>24.5 (622)</td>
<td>9.38 (236)</td>
<td>3.17 (80)</td>
<td>49.44 (1256)</td>
<td>55.88 (1419)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>† ‡ 5809S</td>
<td>42.12</td>
<td>41</td>
<td>118 (2997)</td>
<td>121.12 (3076)</td>
<td>33.88 (861)</td>
<td>38 (965)</td>
<td>108 (2743)</td>
<td>27 (686)</td>
<td>9.38 (236)</td>
<td>3.17 (80)</td>
<td>49.44 (1256)</td>
<td>55.88 (1419)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
<tr>
<td>† ‡ 5811S</td>
<td>42.12</td>
<td>41</td>
<td>118 (2997)</td>
<td>129.12 (3280)</td>
<td>33.88 (861)</td>
<td>38 (965)</td>
<td>108 (2743)</td>
<td>27 (686)</td>
<td>9.38 (236)</td>
<td>3.17 (80)</td>
<td>49.44 (1256)</td>
<td>55.88 (1419)</td>
<td>5 (127)</td>
<td>6 (147.5)</td>
<td>23.56 (598)</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions are subject to change. Not to be used for construction purposes unless certified.

Units may be built where foot/feet overhang the motor mounting platform. If overhang is unacceptable, consult factory for a custom submittal, quotation and/or lead time. A certified motor drawing will be required.

† For all customer supplied motors above 449 NEMA frame, a certified motor drawing must be supplied by the customer at the time of order entry.

‡ Submittal dimensions for motor frames above 449 NEMA are specific to ODP U.S. Electric Motors Only.

These dimensions are valid when using the Woods Duraflex spacer coupling option. For dimensions on Falk SteelFlex coupling options, consult factory for a special submittal drawing.