Model VSH
12x14x17½B
Double Suction Split Case Pump

SPECIFICATIONS

FLOW
HEAD
HP
RPM
VOLTS
CYCLE
PHASE
ENCLOSURE
APPROX. WEIGHT
SPECIALS

STANDARD MATERIALS OF CONSTRUCTION
- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE

<table>
<thead>
<tr>
<th>Standard</th>
<th>175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional</td>
<td>300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal; EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)</td>
</tr>
<tr>
<td>Optional</td>
<td>300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal; EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)</td>
</tr>
</tbody>
</table>

Series VSX
Bell & Gossett
12x14x17½B
1180 RPM

xylem
Let's Solve Water
Model VSH
12x14x17½B
Double Suction Split Case Pump

SPECIFICATIONS

FLOW ___________ HEAD ___________

HP ___________ RPM ___________

VOLTS ___________ PHASE ___________

CYCLE ___________ PHASE ___________

ENCLOSURE _______________________

APPROX. WEIGHT __________________

SPECIALS _______________________

STANDARD MATERIALS OF CONSTRUCTION
- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE

- **Standard:** 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- **Optional:** 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- **Optional:** 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
Model VSH 12x14x17½B Centrifugal Pump Submittal

**FLANGE DIMENSIONS IN INCHES (MM)**

<table>
<thead>
<tr>
<th>SIZE</th>
<th>THICKNESS</th>
<th>O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge 12&quot;</td>
<td>2.25 (56)</td>
<td>20.25 (514)</td>
</tr>
<tr>
<td>Suction</td>
<td>14&quot;</td>
<td>2.38 (60)</td>
</tr>
</tbody>
</table>

**FLANGES ARE 125# ANSI - STANDARD**

250# ANSI - AVAILABLE

**DIMENSIONS IN INCHES (MM)**

<table>
<thead>
<tr>
<th>S</th>
<th>VH</th>
<th>X</th>
<th>YY</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4</td>
<td>16.5</td>
<td>24</td>
<td>24</td>
<td>14.4</td>
</tr>
<tr>
<td>(366)</td>
<td>(419)</td>
<td>(610)</td>
<td>(610)</td>
<td>(366)</td>
</tr>
</tbody>
</table>

Removal clearance from end of bracket: 34 inches (864 mm)

**STANDARD COUPLER**

*Motor dimensions are approximate and vary by manufacturer and motor type.

**Distance to the next available hole.

---

### MOTOR FRAME

#### 404T/TS

<table>
<thead>
<tr>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC1</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2</th>
<th>HH</th>
<th>HM</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.25</td>
<td>41</td>
<td>91</td>
<td>2311</td>
<td>2224</td>
<td>33</td>
<td>39.12</td>
<td>81</td>
<td>20.25</td>
<td>7</td>
<td>1.13</td>
<td>43.47</td>
<td>49.5</td>
<td>5</td>
<td>14.75</td>
</tr>
<tr>
<td>(1276)</td>
<td>(1041)</td>
<td>(2311)</td>
<td>(2224)</td>
<td>(33)</td>
<td>(39.12)</td>
<td>(81)</td>
<td>(20.25)</td>
<td>(7)</td>
<td>(1.13)</td>
<td>(43.47)</td>
<td>(49.5)</td>
<td>(5)</td>
<td>(14.75)</td>
<td>(27.63)</td>
</tr>
</tbody>
</table>

#### 405T/TS

<table>
<thead>
<tr>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC1</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2</th>
<th>HH</th>
<th>HM</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.25</td>
<td>41</td>
<td>91</td>
<td>2311</td>
<td>2227</td>
<td>33</td>
<td>39.12</td>
<td>81</td>
<td>20.25</td>
<td>7</td>
<td>1.13</td>
<td>43.47</td>
<td>49.5</td>
<td>5</td>
<td>14.75</td>
</tr>
<tr>
<td>(1276)</td>
<td>(1041)</td>
<td>(2311)</td>
<td>(2227)</td>
<td>(33)</td>
<td>(39.12)</td>
<td>(81)</td>
<td>(20.25)</td>
<td>(7)</td>
<td>(1.13)</td>
<td>(43.47)</td>
<td>(49.5)</td>
<td>(5)</td>
<td>(14.75)</td>
<td>(27.63)</td>
</tr>
</tbody>
</table>

#### 444T/TS

<table>
<thead>
<tr>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC1</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2</th>
<th>HH</th>
<th>HM</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.25</td>
<td>41</td>
<td>91</td>
<td>2311</td>
<td>2414</td>
<td>33</td>
<td>39.12</td>
<td>81</td>
<td>20.25</td>
<td>7</td>
<td>1.13</td>
<td>48.52</td>
<td>49.5</td>
<td>5</td>
<td>14.75</td>
</tr>
<tr>
<td>(1276)</td>
<td>(1041)</td>
<td>(2311)</td>
<td>(2414)</td>
<td>(33)</td>
<td>(39.12)</td>
<td>(81)</td>
<td>(20.25)</td>
<td>(7)</td>
<td>(1.13)</td>
<td>(48.52)</td>
<td>(49.5)</td>
<td>(5)</td>
<td>(14.75)</td>
<td>(27.63)</td>
</tr>
</tbody>
</table>

#### 445T/TS

<table>
<thead>
<tr>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC1</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2</th>
<th>HH</th>
<th>HM</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.25</td>
<td>41</td>
<td>91</td>
<td>2311</td>
<td>2454</td>
<td>33</td>
<td>39.12</td>
<td>81</td>
<td>20.25</td>
<td>7</td>
<td>1.13</td>
<td>48.52</td>
<td>49.5</td>
<td>5</td>
<td>14.75</td>
</tr>
<tr>
<td>(1276)</td>
<td>(1041)</td>
<td>(2311)</td>
<td>(2454)</td>
<td>(33)</td>
<td>(39.12)</td>
<td>(81)</td>
<td>(20.25)</td>
<td>(7)</td>
<td>(1.13)</td>
<td>(48.52)</td>
<td>(49.5)</td>
<td>(5)</td>
<td>(14.75)</td>
<td>(27.63)</td>
</tr>
</tbody>
</table>

#### 447T/TS

<table>
<thead>
<tr>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC1</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2</th>
<th>HH</th>
<th>HM</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.25</td>
<td>41</td>
<td>96</td>
<td>2438</td>
<td>2619</td>
<td>33</td>
<td>39.12</td>
<td>86</td>
<td>17.2</td>
<td>7</td>
<td>1.13</td>
<td>46.88</td>
<td>49.5</td>
<td>5</td>
<td>14.75</td>
</tr>
<tr>
<td>(1276)</td>
<td>(1041)</td>
<td>(2438)</td>
<td>(2619)</td>
<td>(33)</td>
<td>(39.12)</td>
<td>(86)</td>
<td>(17.2)</td>
<td>(7)</td>
<td>(1.13)</td>
<td>(46.88)</td>
<td>(49.5)</td>
<td>(5)</td>
<td>(14.75)</td>
<td>(27.63)</td>
</tr>
</tbody>
</table>

#### 449T/TS

<table>
<thead>
<tr>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC1</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2</th>
<th>HH</th>
<th>HM</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.25</td>
<td>41</td>
<td>96</td>
<td>2438</td>
<td>2637</td>
<td>33</td>
<td>39.12</td>
<td>86</td>
<td>17.2</td>
<td>7</td>
<td>1.13</td>
<td>46.88</td>
<td>49.5</td>
<td>5</td>
<td>14.75</td>
</tr>
<tr>
<td>(1276)</td>
<td>(1041)</td>
<td>(2438)</td>
<td>(2637)</td>
<td>(33)</td>
<td>(39.12)</td>
<td>(86)</td>
<td>(17.2)</td>
<td>(7)</td>
<td>(1.13)</td>
<td>(46.88)</td>
<td>(49.5)</td>
<td>(5)</td>
<td>(14.75)</td>
<td>(27.63)</td>
</tr>
</tbody>
</table>

### Dimensions are subject to change. Not to be used for construction purposes unless certified.

Units may be built where foot/feet overhang the motor mounting platform. If overhang is unacceptable, consult factory for a custom submittal, quotation and/or lead time. A certified motor drawing will be required.
SPACER COUPLER

Motor dimensions are approximate and vary by manufacturer and motor type.

Distance to the next available hole.

Dimensions are subject to change. Not to be used for construction purposes unless certified.

Units may be built where foot/feet overhang the motor mounting platform. If overhang is unacceptable, consult factory for a custom submittal, quotation and/or lead time. A certified motor drawing will be required.

These dimensions are valid when using the Woods Duraflex spacer coupling option. For dimensions on Falk SteelFlex coupling options, consult factory for a special submittal drawing.
Model VSH
12x14x17½B
Double Suction Split Case Pump

SPECIFICATIONS

FLOW ___________ HEAD ___________
HP ___________ RPM ___________
VOLTS ___________ CYCLE ___________ PHASE ___________
ENCLOSURE ___________
APPROX. WEIGHT ___________
SPECIALS ___________

STANDARD MATERIALS OF CONSTRUCTION

- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION

- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE

- Standard: 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
## Model VSH 12x14x17½B
Double Suction Split Case Pump

### Specifications

<table>
<thead>
<tr>
<th>Flow (GPM)</th>
<th>Head (PSI)</th>
<th>HP</th>
<th>RPM</th>
<th>Volts</th>
<th>Cycle</th>
<th>Phase</th>
<th>Enclosure</th>
<th>APPROX. Weight</th>
<th>SPECIALS</th>
</tr>
</thead>
</table>

### Standard Materials of Construction

- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

### Optional Materials of Construction

- Galvanized Drip Pan
- Spacer Coupling

### Type of Seal and Working Pressure

- **Standard:** 175 PSI (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSI (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- **Optional:** 300 PSI (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSI (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- **Optional:** 300 PSI (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSI (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)

---

### Performance Curve

![Series VSX Performance Curve](image-url)