Model VSH 10x12x22A
Double Suction Split Case Pump

SPECIFICATIONS
- **FLOW**
- **HEAD**
- **HP**
- **RPM**
- **VOLTS**
- **CYCLE**
- **PHASE**
- **ENCLOSURE**
- **APPROX. WEIGHT**
- **SPECIALS**

STANDARD MATERIALS OF CONSTRUCTION
- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Groutless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE
- **Standard:** 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- **Optional:** 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)

Graphs
- **Series VSX 10x12x22A 1180 RPM**
- **Bell & Gossett**

NOTE: This document contains technical specifications and diagrams for the Model VSH 10x12x22A Double Suction Split Case Pump, including details on materials, seal types, and performance characteristics. It is intended for use in selecting and specifying pumps for various applications.
Model VSH
10x12x22A
Double Suction Split Case Pump

SPECIFICATIONS
FLOW HEAD
HP RPM
VOLTS PHASE
CYCLE ENCLOSURE
APPROX. WEIGHT
SPECIALS

TYPE OF SEAL AND WORKING PRESSURE
Standard: 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (18 to 149°C)

Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (18 to 149°C)

Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (18 to 149°C)
Model VSH
10x12x22A
Double Suction Split Case Pump

SPECIFICATIONS
FLOW _______ HEAD ________
HP ________ RPM ______
VOLTS _______ CYCLE _______ PHASE _______
ENCLOSURE ________ APPROX. WEIGHT ________
SPECIALS ________

STANDARD MATERIALS OF CONSTRUCTION
- Cast Iron Bronze Fitted
- Heavy Duty Maintenance Free Bearings
- Alignment Friendly Coupling
- Heavy Duty Grountless Baseplate
- ANSI/OSHA Coupling Guard
- ISO 1940-1:2003 Impeller Balance

OPTIONAL MATERIALS OF CONSTRUCTION
- Galvanized Drip Pan
- Spacer Coupling

TYPE OF SEAL AND WORKING PRESSURE
- Standard: 175 PSIG (12 BAR) max. working pressure, flat face flanges, 125# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, 250# ANSI flange drilling, Unitized mechanical seal, EPR/Carbon/Silicon Carbide, 125 PSIG (8.5 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
- Optional: 300 PSIG (20 BAR) max. working pressure, flat face flanges, balanced mechanical seal, EPR/Graphite loaded Silicon Carbide on Graphite loaded Silicon Carbide, 300 PSIG (20 BAR) max. suction pressure, 0 to 300°F (-18 to 149°C)
Model VSH 10x12x22A Centrifugal Pump Submittal

FLANGE DIMENSIONS IN INCHES (MM)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>THICKNESS</th>
<th>O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge 10"</td>
<td>2.06 (52)</td>
<td>17 (432)</td>
</tr>
<tr>
<td>Suction 12"</td>
<td>2.19 (56)</td>
<td>20.25 (514)</td>
</tr>
</tbody>
</table>

FLANGES ARE DRILLED 125# ANSI - STANDARD 250# ANSI - AVAILABLE

<table>
<thead>
<tr>
<th>S</th>
<th>Z</th>
<th>X</th>
<th>YY</th>
<th>VH</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.56</td>
<td>14.56</td>
<td>24.75</td>
<td>24.75</td>
<td>17.25</td>
</tr>
<tr>
<td>(370)</td>
<td>(370)</td>
<td>(629)</td>
<td>(629)</td>
<td>(438)</td>
</tr>
</tbody>
</table>

Removal clearance from end of bracket: 26 Inches (660 mm)

STANDARD COUPLER

Motors are available with these types of couplers: Type 1, Type 2, and Type 3. Contact factory for a custom submittal, quotation and/or lead time. A certified motor drawing will be required.

† For all customer supplied motors above 449 NEMA frame, a certified motor drawing must be supplied by the customer at the time of order entry.

‡ Submittal dimensions for motor frames above 449 NEMA are specific to ODP U.S. Electric Motors Only.
Model VSH 10x12x22A Centrifugal Pump Submittal

B-865.32D

FLANGE DIMENSIONS IN INCHES (MM)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>THICKNESS</th>
<th>O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10"</td>
<td>2.06 (52)</td>
<td>17 (432)</td>
</tr>
<tr>
<td>12"</td>
<td>2.19 (56)</td>
<td>20.25 (514)</td>
</tr>
</tbody>
</table>

FLANGES ARE DRILLED 125# ANSI - STANDARD 250# ANSI - AVAILABLE

<table>
<thead>
<tr>
<th>S</th>
<th>Z</th>
<th>X</th>
<th>YY</th>
<th>VH</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.56</td>
<td>14.56</td>
<td>24.75</td>
<td>24.75</td>
<td>17.25</td>
</tr>
<tr>
<td>(370)</td>
<td>(370)</td>
<td>(629)</td>
<td>(629)</td>
<td>(438)</td>
</tr>
</tbody>
</table>

Removal clearance from end of bracket: 26 Inches (660 mm)

SPACER COUPLER

<table>
<thead>
<tr>
<th>MOTOR FRAME</th>
<th>CP</th>
<th>HA</th>
<th>HB</th>
<th>HC" MAX.</th>
<th>HD</th>
<th>2HE</th>
<th>HF1</th>
<th>HF2"</th>
<th>HG</th>
<th>HH</th>
<th>HM" MAX.</th>
<th>HO</th>
<th>HP</th>
<th>HQ</th>
<th>HR</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>404T/TS</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2221)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>405T/TS</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2222)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>444T/TS</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2411)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>445T/TS</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2452)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>447T/TS</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2634)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>449T/TS</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2634)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>5008S/MS † ‡</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2528)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>5010S/MS † ‡</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2528)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>5012S/MS † ‡</td>
<td>41.4</td>
<td>41</td>
<td>105</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2687)</td>
<td>(2528)</td>
<td>33</td>
<td>(394)</td>
<td>(2413)</td>
<td>19</td>
<td>(483)</td>
<td>7</td>
<td>(178)</td>
<td>1.13</td>
<td>(29)</td>
</tr>
<tr>
<td>5807S † †</td>
<td>41.4</td>
<td>41</td>
<td>110.5</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2807)</td>
<td>(2785)</td>
<td>38</td>
<td>(965)</td>
<td>(2895)</td>
<td>114</td>
<td>(2895)</td>
<td>28.5</td>
<td>(724)</td>
<td>9.38</td>
<td>(238)</td>
</tr>
<tr>
<td>5809S † †</td>
<td>41.4</td>
<td>41</td>
<td>110.5</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2807)</td>
<td>(2963)</td>
<td>38</td>
<td>(965)</td>
<td>(2895)</td>
<td>114</td>
<td>(2895)</td>
<td>28.5</td>
<td>(724)</td>
<td>9.38</td>
<td>(238)</td>
</tr>
<tr>
<td>5811S † †</td>
<td>41.4</td>
<td>41</td>
<td>110.5</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2807)</td>
<td>(3166)</td>
<td>38</td>
<td>(965)</td>
<td>(2953)</td>
<td>100.52</td>
<td>(2953)</td>
<td>25.13</td>
<td>(638)</td>
<td>9.38</td>
<td>(238)</td>
</tr>
<tr>
<td>5811M+ † †</td>
<td>41.4</td>
<td>41</td>
<td>110.5</td>
<td>(1052)</td>
<td>(1041)</td>
<td>(2807)</td>
<td>(3469)</td>
<td>38</td>
<td>(965)</td>
<td>(2953)</td>
<td>100.52</td>
<td>(2953)</td>
<td>25.13</td>
<td>(638)</td>
<td>9.38</td>
<td>(238)</td>
</tr>
</tbody>
</table>

Dimensions are subject to change. Not to be used for construction purposes unless certified.

Units may be built where foot/feet overhang the motor mounting platform. If overhang is unacceptable, consult factory for a custom submittal, quotation and/or lead time. A certified motor drawing will be required.

These dimensions are valid when using the Woods Duraflex spacer coupling option. For dimensions on Faulk SteelFlex coupling options, consult factory for a special submittal drawing.

† For all customer supplied motors above 449 NEMA frame, a certified motor drawing must be supplied by the customer at the time of order entry.

‡ Submittal dimensions for motor frames above 449 NEMA are specific to ODP U.S. Electric Motors Only.

Motor dimensions are approximate and vary by manufacturer and motor type.

Distance to the next available hole.