Smart Pump Range

Інструкція з встановлення, експлуатації та обслуговування

Cod.001080138UK rev.C ed.02/2018
Software Version 151.00

Applicare qui l’adesivo col codice a barre

Apply the adhesive bar code nameplate here
Зміст

1 Вступ і техніка безпеки ... 5
 1.1 Вступ .. 5
 1.2 Заходи безпеки ... 5
 1.2.1 Рівні небезпеки й умовні позначення з техніки безпеки ... 5
 1.2.2 Безпека користувача ... 6
 1.2.3 Загальні правила техніки безпеки ... 7
 1.2.4 Захист навколишнього середовища 8
 1.2.5 Об’єкти, які зазнають дії радіоактивного випромінювання ... 8
 1.3 Запасні частини .. 9
 1.4 Гарантія на виріб ... 9

2 Транспортування та зберігання ... 10
 2.1 Транспортне оброблення агрегата .. 10
 2.2 Зберігання ... 11

3 Технічний опис .. 12
 3.1 Позначення .. 12
 3.2 Паспортні таблички .. 12
 3.2.1 Двигун ... 12
 3.2.2 Насос ... 13
 3.3 Конструкція й компонування .. 15
 3.4 Цільове використання .. 16
 3.4.1 Альтернативні варіанти застосування 16
 3.4.2 Використання не за призначенням 17
 3.5 Спеціальне застосування ... 17

4 Встановлення виробу ... 18
 4.1 Установлення механічної частини .. 18
 4.1.1 Ділянка встановлення ... 18
 4.1.2 Монтаж агрегата .. 18
 4.1.3 Установлення агрегата поза приміщення 19
 4.2 Електричний монтаж .. 20
 4.2.1 Електричні вимоги ... 20
 4.2.2 Типи та класи проводів .. 20
 4.2.3 З’єднання електроживлення 21

5 експлуатація виробу: .. 25
 5.1 Час очікування .. 25

6 Програмування .. 26
 6.1 Панель керування .. 26
 6.2 Опис кнопок .. 27
 6.3 Опис світлодіодів ... 27
 6.3.1 POWER (power supply) / ЖИВЛЕННЯ (електроживлення) ... 27
6.3.2 STATUS (CTAH) ... 27
6.3.3 SPEED (speed bar) (Світлодіодна лінійка швидкості) 28
6.3.4 COM (зв'язок) ... 28
6.3.5 Одиниця вимірювання ... 28
6.4 Дисплей .. 29
 6.4.1 Головний екран... 29
 6.4.2 Відображення меню параметрів ... 29
 6.4.3 Відображення сигналів тривоги та помилок 30
6.5 Параметри програмного забезпечення ... 30
 6.5.1 Параметри стану ... 31
 6.5.2 Параметри налаштувань .. 32
 6.5.3 Параметри конфігурації приводу 32
 6.5.4 Параметри конфігурації датчика 33
 6.5.5 Параметри інтерфейсу RS485 .. 34
 6.5.6 Параметри конфігурації випробувального прогону 35
 6.5.7 Специфічні параметри ... 35
6.6 Технічні відомості ... 36
 6.6.1 Приклад: режим керування ACT з аналоговим входом 0—10 В .. 36
7 Обслуговування виробу .. 37
8 Пошук та усунення несправностей ... 38
 8.1 Коди сигналів тривоги ... 38
 8.2 Коди помилок .. 38
9 Технічні дані ... 40
 9.1 Розміри й маса ... 41
10 Заяви ... 43
 10.1 Декларація про відповідність нормам ЕЕС (Переклад) 43
 10.2 Заява про відповідність нормам EU (№ EMCD24) 43
Переклад оригінальної інструкції
1 Вступ і техніка безпеки

1.1 Вступ

Мета інструкції

Мета чинної інструкції — ознайомити користувача з важливою інформацією стосовно наступних тем:
- встановлення виробу;
- експлуатація виробу;
- обслуговування виробу.

УВАГА!

Перед установленням та використанням виробу переконайтеся, що ви повністю прочитали та зрозуміли всі частини цієї інструкції. Порушення правил експлуатації виробу може призвести до травмування персоналу та пошкодження майна. У цьому разі гарантія на виріб може бути скасована.

ПРИМІТКА:

Ця інструкція є невід’ємною частиною виробу. Вона завжди має бути доступною для користувача та зберігатися в добром стані поруч із виробом.

1.2 Заходи безпеки

1.2.1 Рівні небезпеки й умовні позначення з техніки безпеки

Перш ніж використовувати виріб і для уникнення ризиків, описаних нижче, слід уважно прочитати, зрозуміти й виконувати такі попередження про небезпеку:
- травми та ризики для здоров’я;
- пошкодження виробу;
- несправність виробу.

Рівні небезпеки

<table>
<thead>
<tr>
<th>Рівень небезпеки</th>
<th>Що означає</th>
</tr>
</thead>
<tbody>
<tr>
<td>НЕБЕЗПЕЧНО:</td>
<td>Позначає небезпечну ситуацію, яка, якщо їй не запобігти, приведе до важких травм або смерті.</td>
</tr>
<tr>
<td>ПОПЕРЕДЖЕННЯ:</td>
<td>Позначає небезпечну ситуацію, яка, якщо їй не запобігти, може призвести до важких травм або смерті.</td>
</tr>
<tr>
<td>УВАГА!</td>
<td>Позначає небезпечну ситуацію, яка, якщо їй не запобігти, може призвести до травм малої або середньої важкості.</td>
</tr>
<tr>
<td>ПРИМІТКА:</td>
<td>Позначає ситуацію, яка, якщо їй не запобігти, може призвести до пошкодження майна, але не до травм людей.</td>
</tr>
</tbody>
</table>
Спеціальні символи

Деякі категорії небезпеки мають специфічні символи, як показано в наступній таблиці.

<table>
<thead>
<tr>
<th>Символ</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>Небезпека ураження електричним струмом.</td>
<td></td>
</tr>
<tr>
<td>Небезпека впливу магнітного поля</td>
<td></td>
</tr>
<tr>
<td>Небезпека від гарячої поверхні</td>
<td></td>
</tr>
<tr>
<td>Радіаційна небезпека</td>
<td></td>
</tr>
<tr>
<td>Вибухонебезпечна атмосфера (директива ЄС ATEX)</td>
<td></td>
</tr>
<tr>
<td>Небезпека порізів і подряпин</td>
<td></td>
</tr>
<tr>
<td>Небезпека роздавлювання (кінцівки)</td>
<td></td>
</tr>
</tbody>
</table>

Інші символи

<table>
<thead>
<tr>
<th>Символ</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>Користувач</td>
<td>Спеціальна інформація для користувачів виробу.</td>
</tr>
<tr>
<td>Монтажник / технік з обслуговування</td>
<td>Спеціальна інформація для персоналу, відповідального за монтаж виробу в системі (гідравлічній та/або електричній системі) та за виконання технічного обслуговування.</td>
</tr>
</tbody>
</table>

1.2.2 Безпека користувача

Неухильно дотримуйтесь поточних норм охорони праці та техніки безпеки.

ПОПЕРЕДЖЕННЯ:

Цей виріб має використовуватися лише кваліфікованими користувачами.

У контексті цієї інструкції, на додачу до положень будь-яких місцевих норм і правил, кваліфікований персонал означає людей, які, завдяки своєму досвіду або освіті, можуть розпізнати існуючі ризики та уникати їх під час монтажу, експлуатації та технічного обслуговування виробу.
Використання недосвідченими користувачами

ПОПЕРЕДЖЕННЯ:

ДЛЯ ЄВРОПЕЙСЬКОГО СОЮЗУ
- Цей пристрій може використовуватися дітьми від 8 років і більше та особами зі зниженними фізичними, сенсорними або розумовими здібностями лише під наглядом або після отримання інструкту ру про безпечне використання пристрою, а також якщо вони усвідомлюють пов’язану з його використанням небезпеку.
- Дітям забороняється грати з пристроєм.
- Дітям забороняється використовувати очищення та обслуговування пристрою без нагляду.

ДЛЯ ІНШИХ КРАЇН
- Цей пристрій не призначений для використання особами (включаючи дітей) зі зниженними фізичними, сенсорними або розумовими здібностями, а також особами, які не мають належного досвіду і знань, за виключенням випадків, коли вони перебувають під наглядом або отримали інструктаж щодо використання виробу від особи, яка відповідає за їхню безпеку.
- Слід наглядати за дітьми, аби вони не грали з пристроєм.

1.2.3 Загальні правила техніки безпеки

ПОПЕРЕДЖЕННЯ:
- Завжди утримуйте робочу зону чистою.
- Пам’ятайте про ризики з боку газів та парів у робочій зоні.
- Завжди пам’ятайте про ризик захлікання, ураження електричним струмом та опіків.

НЕБЕЗПЕЧНО: Небезпека ураження електричним струмом.
- Уникайте всіх електричних ризиків; пам’ятайте про небезпеку ураження електричним струмом або дуговим розрядом.
- Ненавмисне обертання двигунів створює електричну напругу й може зарядити агрегат, що може призвести до смерті, важких травм або пошкодження обладнання. Забезпечте блокування двигунів, щоб унеможливити ненавмисне обертання.

Магнітні поля

Демонтаж або монтаж ротора в корпусі двигуна створює сильне магнітне поле.

НЕБЕЗПЕЧНО: Небезпека впливу магнітного поля
Магнітне поле може бути небезпечним для осіб з установленими кардіостимуляторами або іншими медичними пристроями.

ПРИМІТКА
Магнітне поле може притягувати металеві уламки до поверхні ротора, що спричинить його пошкодження.

Електричні з’єднання

НЕБЕЗПЕЧНО: Небезпека ураження електричним струмом.
- Підключення до джерела електроживлення повинно бути виконано електриком, який має достатню технічну та професійну кваліфікацію, описану в поточних нормах і правилах.

Захходи безпеки перед початком роботи

ПОПЕРЕДЖЕННЯ:
- Установіть відповідний бар’єр навколо робочої зони, наприклад захисну огорожу.
- Переконайтеся, що всі засоби безпеки перебувають на місцях і надійно закріплені.
- Переконайтеся у наявності вільних шляхів евакуації.
Переконайтеся, що виріб не може скотитись або впасти й завдати травм людям або пошкодити майно.
Переконайтеся, що обладнання для піднімання перебуває в добруму стані.
За необхідності використовуйте страхувальні прив'язні ремені, страхувальні канати й дихальне спорядження.
Перед будь-якими роботами з компонентами систем насоса дайте їм повністю охолонути.
Забезпечте, щоб виріб було ретельно очищено.
Перед обслуговуванням агрегату від’єднайте та заблокуйте електроживлення.
Перед початком зварювальних робіт або використанням ручного електроінструмента переконайтесь у відсутності ризику вибуху.

Заходи безпеки під час роботи

ПОПЕРЕДЖЕННЯ:

- Ніколи не працюйте без сторонньої допомоги.
- Завжди користуйтесь засобами індивідуального захисту.
- Завжди використовуйте придатні інструменти для роботи.
- Не перебувайте під підвішеним вантажем.
- Перед будь-якими роботами з компонентами систем насоса дайте їм повністю охолонути.
- Забезпечте, щоб виріб було ретельно очищено.
- Перед обслуговуванням агрегату від’єднайте та заблокуйте електроживлення.
- Перед початком зварювальних робіт або використанням ручного електроінструмента переконайтесь у відсутності ризику вибуху.

У випадку контакту з хімічними речовинами або небезпечними рідинами

Якщо хімічні речовини або небезпечні рідини вступили в контакт з очима чи шкірою, дотримуйтесь такої процедури:

<table>
<thead>
<tr>
<th>Стан хімічних речовин або небезпечних рідин</th>
<th>Дія</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хімічні речовини або небезпечні рідини в очах</td>
<td>1. Розсуньте повіки пальцями і не давайте їм заплющуватися.</td>
</tr>
<tr>
<td></td>
<td>2. Промивайте очі засобом для промивання очей або проточною водою не менше 15 хв.</td>
</tr>
<tr>
<td></td>
<td>3. Зверніться за медичну допомогу.</td>
</tr>
<tr>
<td>Хімічні речовини або небезпечні рідини на шкірі</td>
<td>1. Зніміть забруднений одяг.</td>
</tr>
<tr>
<td></td>
<td>2. Промивайте шкіру милом і водою протягом прийомні 1 хв.</td>
</tr>
<tr>
<td></td>
<td>3. За необхідності зверніться за медичну допомогу.</td>
</tr>
</tbody>
</table>

1.2.4 Захист навколишнього середовища

Утилізація упаковки та виробу

Виконуйте вимоги поточних норм щодо сортування й утилізації відходів.

1.2.5 Об’єкти, які зазнають дії радіоактивного випромінювання

ПОПЕРЕДЖЕННЯ: Радіаційна небезпека

Якщо виріб зазнає дії радіоактивного випромінювання, запровадьте необхідні заходи безпеки для захисту людей. Якщо такий виріб необхідно транспортувати, повідомте про це перевізника і отримувача, щоб вони могли запровадити необхідні заходи безпеки.
1.3 Запасні частини

На веб-сайті www.lowara.com/spark можна знайти запасні частини за кодом виробу. Для отримання технічної інформації слід звертатись до компанії Xylem або вповноваженого дистриб'ютора.

1.4 Гарантія на виріб

Інформація про гарантію наведена в документації договору про продаж.
2 Транспортування та зберігання

Перевірка упаковки

1. Перевірте, що кількість, описи й коди продуктів відповідають замовленню.
2. Перевірте упаковку на наявність пошкоджень або відсутніх компонентів.
3. У випадку очевидних пошкоджень або відсутніх частин:
 • прийміть товар із зауваженнями, вказавши всі виявлені недоліки в транспортному документі, або
 • відмовтеся від товару, вказавши причину в транспортному документі.

В обох випадках негайно зв’яжіться з компанією Xylem або вповноваженим дистриб’ютором, у якого було придбано виріб.

Розпакування та огляд виробу

1. Вилучіть усі пакувальні матеріали, в які загорнуто виріб.
2. Вивільніть виріб, викрутивши гвинти та/або розрізавши ремені (за наявності).

УВАГА! Небезпека порізів і подряпин
Завжди користуйтеся засобами індивідуального захисту.

3. Перевірте цілісність виробу й переконайтеся в наявності всіх компонентів.
4. У випадку пошкодження або відсутності компонентів негайно зв’яжіться з компанією Xylem або вповноваженим дистриб’ютором.

2.1 Транспортне оброблення агрегата

Агрегат слід кріпити й транспортувати відповідно до рис. 1.
ПОПЕРЕДЖЕННЯ: Небезпека роздавлювання (кінцівки)

- Виріб та його компоненти можуть бути важкими: ризик роздавлювання.
- Завжди користуйтесь засобами індивідуального захисту.
- Ручні операції транспортного оброблення виробу та його компонентів повинні виконуватися згідно з поточними нормами і правилами переміщення вантажів вручну, щоб запобігти утворенню несприятливих ергономічних умов, які можуть створювати небезпеку травм хребта.
- Використовуйте крани, канати, такелажні ремені, гаки й карабіни, які відповідають поточним нормам і підходять для конкретного виду застосування.
- Переконайтеся, що кріплення не може пошкодити виріб.
- Під час транспортних операцій уникайте різких рухів, які можуть порушити стійкість вантажу.
- Використовуйте крани, канати, такелажні ремені, гаки й карабіни, які відповідають поточним нормам і підходять для конкретного виду застосування.
- Переконайтеся, що кріплення не може пошкодити виріб.
- Під час транспортних операцій уникайте різких рухів, які можуть порушити стійкість вантажу.
- Під час транспортного оброблення слід вживати заходів для захисту від травмування людей і тварин та/або пошкодження майна.

2.2 Зберігання

Виріб слід зберігати:
- в закритому сухому приміщенні;
- подалі від джерел тепла;
- захищеним від бруду;
- захищеним від вібрації;
- за температури зовнішнього середовища від −25 до +65°C (від −13 до 149°F) та відносної вологості від 5% до 95%.

ПРИМІТКА:
- Не кладіть важкі вантажі на виріб.
- Захищайте виріб від зіткнень.
3 Технічний опис

3.1 Позначення
Одноступінчатий лінійний насос.

3.2 Паспортні таблички
Паспортна табличка містить таку інформацію:
- основні відомості про виріб;
- ідентифікаційний код.

Атестація та сертифікація
Відомості про атестацію наведено на паспортній табличці двигуна:
- тільки
-

3.2.1 Двигун
Паспортна табличка двигуна

Рисунок 2. Паспортна табличка двигуна

Код визначення типу двигуна

Рисунок 3. Код визначення типу двигуна
Переклад оригінальної інструкції

1. Серія ESM
2. Розмір рами двигуна
 90R: Збільшений фланець
 80: Стандартний фланець
3. Виступаюча частина вала
 □□: Стандартна виступаюча частина вала
 S8: Замовна виступаюча частина вала
4. Електроживлення
 1: однофазне електроживлення
 3: трифазне електроживлення
5. Потужність на валі • 10 [кВт]
 03: 0,37 кВт (0,50 к. с.)
 05: 0,55 кВт (0,75 к. с.)
 07: 0,75 кВт (1,00 к. с.)
 11: 1,10 кВт (1,50 к. с.)
 15: 1,50 кВт (2,00 к. с.)
 22: 2,20 кВт (3,00 к. с.)
6. Компонування рами двигуна
 SVE: Фланець із нарізними отворами та вал без шпонкового паза
 B14: Фланець із нарізними отворами
 B5: Фланець із вільними отворами
 HMNA: підходить для монолітних насосів 1÷5 e-HME
 HMNB: Підходить для насосів із муфтами 1÷5 e-HME
 HMVB: підходить для насосів 1÷5 VM
 HMVC: підходить для насосів 10÷22 e-HME
 HMVС: підходить для насосів 10÷22 VM
 LNEE: підходить для лінійних насосів
 56J: відповідає вимогам стандарту NEMA 56 Jet
 56C: відповідає вимогам стандарту NEMA 56C
7. Цільовий ринок
 □□: Стандартний
 ЕС: Європа, Близький Схід та Африка
 США: Північна Америка
8. Напруга
 208-240 : 208—240 В змін. струму 50/60 Гц
 380-460 : 380—460 В змін. струму 50/60 Гц
 230/400: 208—240/380—460 В змін. струму 50/60 Гц

3.2.2 Насос
Паспортна табличка e-LNEEE/e-LNESE/e-LNTEE/e-LNTSE

Рисунок 4. Паспортна табличка e-LNEEE/e-LNESE/e-LNTEE/e-LNTSE

1. Тип насосного агрегата
2. Серійний номер (дата + порядковий номер)
3. Діапазон витрати
4. Мінімальна температура рідини, що прокачується
5. Максимальний робочий тиск
6. Мінімальний показник ККД за 2900 об/хв
7. Код насосного агрегата
8. Гідравлічний ККД у точці оптимального ККД
9. Діаметр обрізаного робочого колеса (наводиться тільки для обрізаних робочих коліс)
10. Повний діаметр робочого колеса (наводиться тільки для обрізаних робочих коліс)
11. Максимальна температура рідини, що прокачується
12. Номінальна потужність насоса
13. Мінімальна температура рідини, що прокачується
14. Діапазон напору
15. Номінальна потужність насоса
16. Повний діаметр робочого колеса (наводиться тільки для обрізаних робочих коліс)
17. Маса насоса
ідентифікаційний код e-LNEEE/e-LNESE/e-LNTSE/e-LNTSE

<table>
<thead>
<tr>
<th>Літера</th>
<th>Опис</th>
<th>Функціональна назва</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Type of pump</td>
<td>[LNE] = in-line single (lінійний прямоточний)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[LNT] = in-line twin (прямоточный подвійний)</td>
</tr>
<tr>
<td>E</td>
<td>Coupling</td>
<td>[E] = extended shaft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[S] = rigid shaft</td>
</tr>
<tr>
<td>E</td>
<td>Engine mode</td>
<td>[E] = e-SM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[X] = reduced diameter, which corresponds to the requirements of the customer</td>
</tr>
<tr>
<td>E</td>
<td>Engine configuration</td>
<td>[E] = e-SM</td>
</tr>
<tr>
<td>P</td>
<td>Pole count</td>
<td>[P] = e-SM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[02] = 1 x 208—240 В</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[04] = 3 x 380—460 В</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[05] = 3 x 208—240/380—460 В</td>
</tr>
<tr>
<td>C</td>
<td>Material of pump casing</td>
<td>[C] = Cast iron</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[S] = Stainless steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[B] = Bronze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[N] = cast stainless steel (1.4408)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[R] = Duplex steel (1.4517)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[L..] = carbide tungsten / metalized graphite / EPDM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[U..] = carbide tungsten / metalized graphite / FKM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[W] = SiC/SiC/FKM</td>
</tr>
</tbody>
</table>

Рисунок 5. Код визначення типу e-HME

1. Тип насоса [LNE] = in-line single (лінійний прямоточний) [LNT] = in-line twin (прямоточный подвійний)
2. Муфта [E] = подовжений вал [S] = жорсткий вал
3. Режим роботи [E] = e-SM
4. Розмір насоса Діаметр трубопроводу подачі — номінальний діаметр робочого колеса
5. Потужність насоса кВт х 10
6. Спеціально обрізане робоче колесо [A або B] = зменшений середній діаметр, який не оптимізує потужність двигуна [X] = зменшений середній діаметр, який відповідає потребам замовників
7. Конструкція двигуна [/E] = e-SM
8. Кількість полюсів [P] = e-SM
9. Електрична напруга + частота [02] = 1 x 208—240 В [04] = 3 x 380—460 В [05] = 3 x 208—240/380—460 В
10. Матеріал корпусу насоса [C] = Чавун
3.3 Конструкція й компонування

Агрегат може бути обладнаний функціями, яких вимагає його застосування.

Рисунок 9. Основні елементи — однофазні та трифазні моделі

Таблиця 1: Опис елементів

<table>
<thead>
<tr>
<th>Номер позиції</th>
<th>Опис</th>
<th>Момент затягування ±15%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[Нм]</td>
</tr>
<tr>
<td>1</td>
<td>Гвинт</td>
<td>1,4</td>
</tr>
<tr>
<td>2</td>
<td>Кришка клемної коробки</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Додатковий модуль із колодкою</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Кабельний сальник входу-виходу M12</td>
<td>2,0</td>
</tr>
<tr>
<td>5</td>
<td>Кабельний сальник M20 для кабелів електроживлення</td>
<td>2,7</td>
</tr>
<tr>
<td>6</td>
<td>Кабельний сальник входу-виходу M16</td>
<td>2,8</td>
</tr>
<tr>
<td>7</td>
<td>Привід (однофазна модель)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Двигун</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Гвинт</td>
<td>6,0</td>
</tr>
<tr>
<td>10</td>
<td>Привід (трифазна модель)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Відокремлювальна платаина</td>
<td>-</td>
</tr>
</tbody>
</table>
Компоненти, попередньо встановлені на заводі

Таблиця 2: Компоненти в комплекті

<table>
<thead>
<tr>
<th>Компонент</th>
<th>Кількість</th>
<th>Примітки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Заглушка для кабельного сальника</td>
<td>M12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>M20</td>
<td>1</td>
</tr>
<tr>
<td>Кабельний сальник та стопорна гайка</td>
<td>M12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>M20</td>
<td>1</td>
</tr>
<tr>
<td>Зовнішній діаметр кабелю:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Зовнішній діаметр кабелю:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,7—7,0 мм (0,145—0,275 дюйма)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,5—10,0 мм (0,177—0,394 дюйма)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,0—13,0 мм (0,275—0,512 дюйма)</td>
</tr>
</tbody>
</table>

Додаткові компоненти

Таблиця 3: Додаткові компоненти

<table>
<thead>
<tr>
<th>Компонент</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>Датчики</td>
<td>З агрегатом можуть бути використані такі датчики:</td>
</tr>
<tr>
<td></td>
<td>• датчик рівня.</td>
</tr>
<tr>
<td>Модуль RS485</td>
<td>Для під'єднання багатонасосної системи до системи контролю через кабель (протокол Modbus або BACnet MS/TP)</td>
</tr>
<tr>
<td>Бездротовий модуль</td>
<td>Для бездротового підключення та взаємодії з приводом e-SM</td>
</tr>
<tr>
<td>Перехідник</td>
<td>Перехідник із метричної різьби M20 на 1/2" NPT (ця позиція завжди постачається для ринку США)</td>
</tr>
</tbody>
</table>

3.4 Цільове використання

- Розподіл води
- Охолодження та постачання гарячої води у промислових та житлових будинках
- Системи фільтрування
- Системи теплопостачання;
- Перекачування конденсату
- Віддалене теплопостачання
- Загальна промисловість
- Підприємства харчової промисловості

Рідини, що прокачуються

- холодної води;
- гарячої води;
- чисті рідини;
- рідин, які не є хімічно й механічно агресивними для матеріалів насоса.

3.4.1 Альтернативні варіанти застосування

Виконавчий пристрій (постійна швидкість)

Агрегат працює як виконавчий пристрій згідно з установленою швидкістю; це здійснюється через інтерфейс користувача, відповідний аналоговий вхід або комунікаційну шину.

Контролер (постійний тиск)

Цей режим встановлюється як робочий режим за замовчуванням і використовується для агрегатів з одним насосом.
3.5 Використання не за призначенням

ПОПЕРЕДЖЕННЯ:

Використання насоса не за призначенням може створити небезпечну ситуацію і спричинити травми та матеріальні збитки.

Використання насоса не за призначенням може призвести до скасування гарантії.

Приклади застосування не за призначенням:

- Помпування рідин, що не є сумісними з матеріалами, з яких виготовлено електричний насос
- Помпування небезпечних, токсичних, вибухонебезпечних, зайвистих або корозійних рідин
- Помпування питьних рідин, крім води (наприклад, вина або молока)

Приклади неправильного встановлення:

- Небезпечні місцезнаходження (наприклад, вибухонебезпечна або корозійна атмосфера).
- Приміщення з дуже високою температурою повітря та/або поганою вентиляцією.
- Встановлення поза приміщенням без захисту від дощу або температур замерзання

НЕБЕЗПЕЧНО:

Суворо забороняється використовувати цей виріб для помпування вогненебезпечних та (або) вибухонебезпечних рідин.

ПРИМІТКА:

- Не використовуйте цей насос для помпування рідин, що містять абразивні, тверді або волокнисті речовини.
- Не використовуйте цей насос для швидкості потоку, що перевищує значення, указані на табличці технічних даних.

3.6 Спеціальне застосування

У наведених нижче випадках слід звертатись до компанії Xylem або вповноваженого дистриб'ютора:

- у разі необхідності помпування рідин зі щільністю й (або) в'язкістю, що перевищує щільність та (або) в'язкість води (наприклад, суміші води з гліколем);
- Якщо рідина, що прокачується, оброблена хімічним способом (наприклад, пом'якшена, деіонізована, демінералізовано тощо)
- у разі виникнення ситуацій, відмінних від описаних, які мають відношення для рідин, що прокачуються.
4 Встановлення виробу

4.1 Установлення механічної частини

4.1.1 Ділянка встановлення

НЕБЕЗПЕЧНО: Вибухонебезпечна атмосфера

Робота агрегата у вибухонебезпечній атмосфері або атмосфері, яка містить горючий пил (наприклад, деревний пил, борошно, цукор та зерновий пил), суворо заборонена.

ПОПЕРЕДЖЕННЯ:
- Завжди користуйтеся засобами індивідуального захисту.
- Завжди використовуйте придатні інструменти для роботи.
- Під час вибору місця встановлення й підключення агрегата до джерел гідравлічного й електричного живлення дотримуйтесь вимог поточних норм.
- Забезпечте, щоб умови на місці встановлення відповідали класу захисту агрегату від зовнішніх впливів (IP 55, тип NEMA 1).

УВАГА!
- Захист входу: для забезпечення класу захисту IP55 (тип NEMA 1) переконайтесь, що агрегат закрито належним чином.
- Перед відкриттям кришки клемної коробки переконайтесь, що всередині агрегата немає рідини.
- Переконайтеся, що всі кабельні сальники та отвори для кабелів, які не використовуються, загерметизовані належним чином.
- Переконайтеся, що пластикова кришка закрита належним чином.
- Не залишайте клемну коробку незакритою: ризик пошкодження через забруднення.

4.1.2 Монтаж агрегата

- Див. інструкції в посібнику зі швидкого початку роботи (код 001080130)
- Розташуйте агрегат, як показано на рис. 10.
- Установлюйте агрегат згідно з потоком рідини в системі.
- Стрілки на корпусі насоса вказують напрямок потоку й обертання.
- Стандартним напрямком обертання є напрямок за годинниковою стрілкою (якщо дивитися з боку кришки вентилятора).
- Завжди встановлюйте запобіжний пристрій для зворотного потоку на стороні всмоктування.
- Завжди встановлюйте датчик тиску на стороні нагнітання, після зворотного клапана.
4.1.3 Установлення агрегата поза приміщенням

У випадку встановлення агрегата поза приміщенням забезпечте відповідне накриття (див. приклад на рис. 11). Розмір накриття повинен бути таким, щоб двигун не зазнав дії снігу, дощу або прямих сонячних променів; виконуйте вказівки у п. 9, табл. 16.

<table>
<thead>
<tr>
<th>Зона</th>
<th>Модель приводу e-SM</th>
<th>Вільна відстань</th>
</tr>
</thead>
<tbody>
<tr>
<td>Над агрегатом</td>
<td>103..105..107..111..115</td>
<td>> 260 мм (10,2 дюйма)</td>
</tr>
<tr>
<td>Міжвісева відстань між агрегатами (для забезпечення місця для прокладання кабелів)</td>
<td>103..105..107..111..115</td>
<td>> 260 мм (10,2 дюйма)</td>
</tr>
<tr>
<td></td>
<td>303..305..307..311..315..322</td>
<td>≥ 300 мм (11,8 дюйма)</td>
</tr>
</tbody>
</table>
4.2 Електричний монтаж

НЕБЕЗПЕЧНО: Небезпека ураження електричним струмом.

Підключення до джерела електропостачання повинно бути виконано електриком, який має достатньо технічну та професійну кваліфікацію, описану в поточних нормах і правилах.

4.2.1 Електричні вимоги

Місцеві директиви мають переважну силу над вимогами, указаними нижче.

Список перевірів електричного підключення

Дотримуйтесь таких правил:
- електричні провідники захищені від високих температур, вібрації та зіштовхування.
- Тип і напруга електричної мережі відповідають технічним даним, указаним на паспортній табличці насоса.
- Силова лінія оснащена:
 - високочутливим вимикачем за витоком струму через заземлення (30 мА) [ПЗВ, пристрій захисного відключення], який розрахований на спрацювання за короткого замикання на землю, із кнопками компонентів змінного чи постійного струму (однофазна версія), або кнопками компонентів змінного чи постійного струму й постійного струму (трифазна версія);
 - мережевим ізольючичним вимикачем із контактним зазором мінімум 3 мм.

Список перевірок електричної панелі керування

ПРИМІТКА:
папелю керування має відповідати технічним характеристикам електронасоса. За неправильної комбінації параметрів захист агрегата не гарантується.

Дотримуйтесь таких правил:
- Панель керування має захищати насос від короткого замикання. Для захисту насоса можна використовувати інерційний плавкий запобіжник або автоматичний вимикач (рекомендується модель типу С).
- Насос має вбудований захист від перевантаження й перегрівання, додатковий захист від перевантаження не потрібен.

НЕБЕЗПЕЧНО: Небезпека ураження електричним струмом.
Перед початком робіт на пристрої переконатися, що пристрій та панель керування ізольовані від живлення та не можуть увімкнутися.

Заземлення

НЕБЕЗПЕЧНО: Небезпека ураження електричним струмом.

- Перш ніж установлювати інші електричні з'єднання, обов'язково підключайте зовнішній захисний провідник до клем заземлення.
- Підключіть всі електричні приладдя насоса та двигуна до заземлення, забезпечивши належне виконання з'єднань.
- Переконайтеся, що захисний провідник (заземлення) довше, ніж фазові провідники; у випадку ненавмисного від’єднання кабелю живлення захисний провідник (заземлення) повинен від’єднуватися від клеми останнім.

Використовуйте багатожильний кабель для зниження електричних шумів.

4.2.2 Типи та класи проводів

- Усі кабелі повинні відповідати вимогам місцевих і державних стандартів щодо перетину та температури зовнішнього середовища.
• Використовуйте кабелі з мінімальною термостійкістю +70°C (158°F); для відповідності
нормативам UL (Underwriters Laboratories) усі силові підключення повинні виконуватися з
використанням таких типів мідних кабелів із мінімальною термостійкістю +75°C: THW, THWN.
• Кабелі ніколи не повинні торкатися корпуса двигуна, насоса та трубопровідів.
• Кабелі, підключенні до клем живлення й реле сигналу відмови (HP, заг.), повинні бути
відокремлені від інших посиленою ізоляцією.

Таблиця 4: Електричні з'єднувальні кабелі

<table>
<thead>
<tr>
<th>Моделі приводу e- SM</th>
<th>Кабель живлення агрегата + захисне заземлення</th>
<th>Момент затягування</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Кількість провідів x макс. перетин мідної жили</td>
<td>Кількість провідів x AWG</td>
</tr>
<tr>
<td>103, 105, 107, 111, 115</td>
<td>3 x 1,5 мм² 3 x 0,0023 кв. дюйма</td>
<td>3 x 15 AWG</td>
</tr>
<tr>
<td>303, 305, 307, 311, 315, 322</td>
<td>4 x 1,5 мм² 4 x 0,0023 кв. дюйма</td>
<td>4 x 15 AWG</td>
</tr>
</tbody>
</table>

Кабелі контуру керування

Зовнішні безпотенційні контакти повинні підходити для перемикання < 10 В пост. струму.

ПРИМІТКА:
• Установлюйте кабелі контуру керування окремо від кабелів живлення й кабелю реле
сигналу відмови.
• Якщо кабелі контуру керування встановлюються паралельно з кабелем живлення або
кабелем реле сигналу відмови, відстань між кабелями повинна перевищувати 200 мм.
• Не перехрешуйте кабелі живлення; якщо ж це необхідно зробити, допускається кут
перехрещення 90°.

Таблиця 5: Рекомендовані кабелі контуру керування

<table>
<thead>
<tr>
<th>Кабелі контуру керування приводу e-SM</th>
<th>Кількість провідів x макс. перетин мідної жили</th>
<th>AWG</th>
<th>Момент затягування</th>
</tr>
</thead>
<tbody>
<tr>
<td>Усі проводи входів і виходів</td>
<td>0,75÷1,5 мм² 0,00012÷0,0023 кв. дюйма</td>
<td>18÷16 AWG</td>
<td>0,6 Нм 5,4 фунт-дуйм</td>
</tr>
</tbody>
</table>

4.2.3 З'єднання електроживлення

ПОПЕРЕДЖЕННЯ: Небезпека ураження електричним струмом.

Контакт з електричними компонентами може призвести до смерті навіть після вимикання агрегата.
Перед виконанням будь-яких робіт на агрегаті необхідно, щоб мережева напруга та будь-які
інші джерела входів напруги були відключени протягом мінімальних проміжків часу, указаних
у таблиці 9.

ПОПЕРЕДЖЕННЯ:
Під'єднуйте електропривід лише до ланцюгів безпечної наднизької напруги (БНН). Ланцюги,
призначені для використання з зовнішнім комунікаційним та керувальним обладнанням,
мають конструктивні засоби ізоляції від сусідніх небезпечних ланцюгів всередині агрегата.
Ланцюги зв'язку й керування всередині агрегата є плаваючими відносно маси та
ізольовані від електричних ланцюгів, що не є ланцюгами БНН, їх слід під'єднувати таким чином, щоб
усі ці ланцюги залишалися в межах БНН та не створювався ризик паразитного зворотного
зв'язку через заземлення. Фізична та електрична ізоляція ланцюгів зв'язку й керування від
електричних ланцюгів, що не є ланцюгами БНН, повинна забезпечуватися як всередині, так і
зовні інверторів.
Таблиця 6: Процедура підключення електроживлення

<table>
<thead>
<tr>
<th>Посилання</th>
<th>1. Відкрийте кришку клемної коробки (2), витягнувши гвинти (1).</th>
<th>2. Вставте кабель живлення в кабельний сальник M20 (5)</th>
<th>3. Підключіть кабель відповідно до електричної схеми.</th>
<th>4. Під’єднайте заземлювальний провідник (масу) і переконайтеся, що він довший від фазових провідників.</th>
<th>5. Приєднайте проводи фаз.</th>
<th>6. Закрийте кришку (2) і затягніть гвинти (1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рис. 9</td>
<td>Рис. 9</td>
<td>Рис. 9</td>
<td>Рис. 12</td>
<td>Рис. 9</td>
<td>Рис. 9</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 7: Процедура підключення проводів входів і виходів

<table>
<thead>
<tr>
<th>Посилання</th>
<th>1. Відкрийте кришку клемної коробки (2), витягнувши гвинти (1).</th>
<th>2. Підключіть кабель відповідно до електричної схеми.</th>
<th>3. Закрийте кришку (2) і затягніть гвинти (1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рис. 9</td>
<td>Рис. 13</td>
<td>Рис. 9</td>
<td></td>
</tr>
</tbody>
</table>

Рисунок 12. Монтажна схема
Рисунок 13. Маркування підключень

Таблиця 8: Клеми входів і виходів

<table>
<thead>
<tr>
<th>Поз.</th>
<th>Клеми</th>
<th>№</th>
<th>Опис</th>
<th>Примітки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Сигнал відмови</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4</td>
<td>ЗАГ. — реле стану помилки</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>5</td>
<td>NO — реле стану помилки</td>
<td></td>
</tr>
<tr>
<td>2~</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Подача допоміжної напруги</td>
<td>15 В</td>
<td>Підача допоміжної напруги +15 В пост. струму</td>
<td>15 В пост. струму, Σ макс. 100 мА</td>
</tr>
<tr>
<td></td>
<td>P2IN/S+</td>
<td>7</td>
<td>Вхід режиму виконавчого пристрою 0—10 В</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2C/S-</td>
<td>8</td>
<td>GND для входу 0—10 В</td>
<td>GND, електронне заземлення (для S+)</td>
</tr>
<tr>
<td>3~</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зовнішній датчик тиску (включаючи диференційний)</td>
<td>P1+</td>
<td>9</td>
<td>Електроприєднання зовнішнього датчика +15 В пост. струму</td>
<td>15 В пост. струму, I макс. 100 мА</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>P1-</td>
<td>10</td>
<td>Вхід зовнішнього датчика 4—20 мА</td>
<td>4÷20 мА</td>
</tr>
<tr>
<td>Зовнішній пуск/зупинка</td>
<td>START</td>
<td>11</td>
<td>Зовнішній вхідний еталонний сигнал УВІМК/ВИМК.</td>
<td>За замовчуванням замкнений накоротко Насос у РОБОЧОМУ стані</td>
</tr>
<tr>
<td></td>
<td>STOP</td>
<td>12</td>
<td>Зовнішній вхід УВІМК/ВИМК.</td>
<td></td>
</tr>
<tr>
<td>Зовнішній сигнал відсутності води</td>
<td>LOW+</td>
<td>13</td>
<td>Вхідний сигнал низького рівня води</td>
<td>За замовчуванням замкнений накоротко Виявлення відсутності води: увімкнено</td>
</tr>
<tr>
<td></td>
<td>LOW-</td>
<td>14</td>
<td>Еталонний сигнал низького рівня води</td>
<td></td>
</tr>
<tr>
<td>Комунікаційна шина</td>
<td>B1</td>
<td>15</td>
<td>RS485 порт 1: RS485-1N B (-)</td>
<td>Режим керування ACT, HCS: RS 485 порт 1 для зовнішнього з'єднання</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>RS485 порт 1: RS485-1P A (+)</td>
<td>Режим керування MSE, MSY: RS 485 порт 1 для багатонасосних систем</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>17</td>
<td>Електронне заземлення.</td>
<td></td>
</tr>
<tr>
<td>Комунікаційна шина</td>
<td>В2</td>
<td>18</td>
<td>RS485 порт 2: RS485 порт 2: RS485-2N В (-), активний лише з додатковим модулем</td>
<td>RS 485 порт 2 для зовнішнього з'єднання</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>19</td>
<td>RS485 порт 2: RS485 порт 2: RS485-2P А (+), активний лише з додатковим модулем</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>20</td>
<td>Електронне заземлення</td>
<td></td>
</tr>
<tr>
<td>Сигнал відмови</td>
<td>C</td>
<td>25</td>
<td>ЗАГ. — реле стану помилки</td>
<td>У випадку кабелів живлення: використовуйте кабельний сальник M20</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>24</td>
<td>NO — реле стану помилки</td>
<td></td>
</tr>
<tr>
<td>Сигнал роботи двигуна</td>
<td>C</td>
<td>23</td>
<td>Загальний контакт</td>
<td>У випадку кабелів живлення: використовуйте кабельний сальник M20</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>22</td>
<td>Нормально розімкнений контакт</td>
<td></td>
</tr>
<tr>
<td>Подача допоміжної напруги</td>
<td>15 В</td>
<td>21</td>
<td>Подача допоміжної напруги +15 В пост. струму</td>
<td>15 В пост. струму, I макс. 100 мА</td>
</tr>
<tr>
<td>Аналоговий вхід 0-10 В</td>
<td>S+</td>
<td>20</td>
<td>Вхід режиму виконавчого пристрою 0—10 В</td>
<td>0÷10 В пост. струму</td>
</tr>
<tr>
<td></td>
<td>S-</td>
<td>19</td>
<td>GND для входу 0—10 В</td>
<td>GND, електронне заземлення (для S+)</td>
</tr>
<tr>
<td>Зовнішній датчик тиску (включаючи диференційний)</td>
<td>P1+</td>
<td>18</td>
<td>Електроприєднання зовнішнього датчика +15 В пост. струму</td>
<td>15 В пост. струму, I макс. 100 мА</td>
</tr>
<tr>
<td></td>
<td>P1-</td>
<td>17</td>
<td>Вхід зовнішнього датчика 4—20 мА</td>
<td>4÷20 мА</td>
</tr>
<tr>
<td>Датчик зовнішнього тиску</td>
<td>P2+</td>
<td>16</td>
<td>Електроприєднання зовнішнього датчика +15 В пост. струму</td>
<td>15 В пост. струму, I макс. 100 мА</td>
</tr>
<tr>
<td></td>
<td>P2-</td>
<td>15</td>
<td>Вхід датчика 4—20 мА</td>
<td>4÷20 мА</td>
</tr>
<tr>
<td>Зовнішній пуск/зупинка</td>
<td>Start</td>
<td>14</td>
<td>Зовнішній вхід УВІМК/ВИМК.</td>
<td>За замовчуванням замкнений накоротко Насос у РОБОЧОМУ стані</td>
</tr>
<tr>
<td></td>
<td>Stop</td>
<td>13</td>
<td>Зовнішній вхідний еталонний сигнал УВІМК/ВИМК.</td>
<td></td>
</tr>
<tr>
<td>Зовнішній сигнал відсутності води</td>
<td>LoW+</td>
<td>12</td>
<td>Вхідний сигнал низького рівня води</td>
<td>За замовчуванням замкнений накоротко Виявлення відсутності води: увімкнено</td>
</tr>
<tr>
<td></td>
<td>LoW-</td>
<td>11</td>
<td>Еталонний сигнал низького рівня води</td>
<td></td>
</tr>
<tr>
<td>Комунікаційна шина</td>
<td>В2</td>
<td>10</td>
<td>RS485 порт 2: RS485 порт 2: RS485-2N В (-), активний лише з додатковим модулем</td>
<td>RS 485 порт 2 для зовнішнього з'єднання</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>9</td>
<td>RS485 порт 2: RS485 порт 2: RS485-2P A (+), активний лише з додатковим модулем</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>8</td>
<td>Електронне заземлення</td>
<td></td>
</tr>
<tr>
<td>Комунікаційна шина</td>
<td>В1</td>
<td>7</td>
<td>RS485 порт 1: RS485-1N B (-)</td>
<td>Режим керування ACT, HCS: RS 485 порт 1 для зовнішнього з'єднання</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>6</td>
<td>RS485 порт 1: RS485-1P A (+)</td>
<td>Режим керування MSE, MSY: RS 485 порт 1 для багатонасосних систем</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>5</td>
<td>Електронне заземлення</td>
<td></td>
</tr>
</tbody>
</table>
5 експлуатація виробу:

У випадку одночасної наявності двох чи більше з таких умов:
- висока температура зовнішнього середовища;
- висока температура рідини;
- робочі точки запитують максимальну потужність агрегата;
- тривала недостатня напруга в мережі живлення;
може скоротитися строк служби та/або відбутися погіршення робочих характеристик агрегата; за детальнішими відомостями звертайтеся в компанію Xylem або до вповноваженого дистриб'ютора.

5.1 Час очікування

ПОПЕРЕДЖЕННЯ: Небезпека ураження електричним струмом.

Перед виконанням будь-яких робіт на агрегаті необхідно, щоб мережева напруга та будь-які інші джерела вхідної напруги були відключені протягом мінімальних проміжків часу, указаних у таблиці 9.

Таблиця 9: Час очікування

<table>
<thead>
<tr>
<th>Модель приводу e-SM</th>
<th>Мінімальний час очікування (хв.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>103, 105, 107, 111, 115</td>
<td>4</td>
</tr>
<tr>
<td>303, 305, 307, 311, 315, 322</td>
<td>5</td>
</tr>
</tbody>
</table>

ПОПЕРЕДЖЕННЯ: Небезпека ураження електричним струмом.

Щоб уникнути небезпеки ураження електричним струмом:
- відключіть подачу живлення змінним струмом;
- відключіть усі типи двигунів на постійних магнітах;
- відключіть усі джерела постійного струму, у тому числі резервні акумуляторні батареї, джерела безперебійного живлення та підключення постійного струму до інших частотних перетворювачів;
- перед проведенням будь-яких робіт із технічного обслуговування або ремонту дочекайтеся повного розрядження конденсаторів; час очікування див. у таблиці 9.
6 Програмування

Заходи безпеки

ПРИМІТКА:

- Уважно прочитайте й виконайте наведені нижче інструкції, перш ніж починати програмування, щоб уникнути встановлення неправильних налаштувань, які можуть призвести до несправностей.
- Усі модифікації повинні виконувати кваліфіковані технічні спеціалісти.

6.1 Панель керування

Рисунок 14. Панель керування

Таблиця 10: Опис панелі керування

<table>
<thead>
<tr>
<th>Номер позиції</th>
<th>Опис</th>
<th>Пункт</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Кнопка зменшення</td>
<td>6.2</td>
</tr>
<tr>
<td>2</td>
<td>Кнопка збільшення</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>Кнопка ПУСК/ЗУПИНКА і доступу до меню</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>Світлодіод живлення</td>
<td>6.3.1</td>
</tr>
<tr>
<td>5</td>
<td>Світлодіод стану</td>
<td>6.3.2</td>
</tr>
<tr>
<td>6</td>
<td>Світлодіодна лінійка швидкості</td>
<td>6.3.3</td>
</tr>
<tr>
<td>7</td>
<td>Світлодіод зв’язку</td>
<td>6.3.4</td>
</tr>
<tr>
<td>8</td>
<td>Світлодіоди одиниць вимірювання</td>
<td>6.3.5</td>
</tr>
<tr>
<td>9</td>
<td>Дисплей</td>
<td>6.4</td>
</tr>
</tbody>
</table>
6.2 Опис кнопок

Таблиця 11: Функції кнопок

<table>
<thead>
<tr>
<th>Кнопка</th>
<th>Функція</th>
</tr>
</thead>
</table>
| ![Кнопка](image1.png) | • Головний вигляд (див. п. 6.4.1): зменшує потрібне значення для вибраного режиму керування
• Меню параметрів (див. п. 6.4.2): зменшує індекс параметра, що відображається
• Відображення/редагування параметрів (див. п. 6.4.2): зменшує значення параметра, що відображається
• Автокалібрування нуля тиску (див. п. 6.5, Р44): автоматичне калібрування датчика тиску. |
| ![Кнопка](image2.png) | • Головний вигляд (див. п. 6.4.1): збільшує потрібне значення для вибраного режиму керування
• Меню параметрів (див. п. 6.4.2): збільшує індекс параметра, що відображається
• Відображення/редагування параметрів (див. п. 6.4.2): збільшує значення параметра, що відображається
• Автокалібрування нуля тиску (див. п. 6.5, Р44): автоматичне калібрування датчика тиску. |
| ![Кнопка](image3.png) | • Головний вигляд (див. п. 6.4.1): ПУСК/ЗУПИНКА насоса
• Меню параметрів (див. п. 6.4.2): перемикає на відображення/редагування параметрів
• Відображення/редагування параметрів (див. п. 6.4.2): зберігає значення параметра |
| ![Кнопка](image4.png) | • Головний вигляд (див. п. 6.4.2): перемикає на вибір параметра
• Меню параметрів: перемикає на відображення головного екрана |
| ![Кнопка](image5.png) | Головний вигляд: перемикається між одиницями виміру швидкості й напору (див. п. 6.4.1). |
| ![Кнопка](image6.png) | Головний вигляд: перемикається між одиницями виміру швидкості й напору (див. п. 6.4.1). |

6.3 Опис світлодіодів

6.3.1 POWER (power supply) / ЖИВЛЕННЯ (електроживлення)

Увімкнений індикатор [POWER] сигнальзує про те, що насос підключений до живлення й усі електронні пристрої працюють.

6.3.2 STATUS (СТАН)

<table>
<thead>
<tr>
<th>Світлодіод</th>
<th>Стан</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вимкнений</td>
<td>Насосний агрегат зупинений</td>
</tr>
<tr>
<td>Безперервно горить зеленим</td>
<td>Насосний агрегат працює</td>
</tr>
<tr>
<td>Блимає зеленим і оранжевим</td>
<td>Сигнал тривоги без блокування за працюючого насосного агрегата</td>
</tr>
<tr>
<td>Безперервно горить оранжевим</td>
<td>Сигнал тривоги без блокування за зупиненого насосного агрегата</td>
</tr>
<tr>
<td>Безперервно горить червоним</td>
<td>Тривога з блокуванням, насосний агрегат не може бути запущений</td>
</tr>
</tbody>
</table>
6.3.3 SPEED (speed bar) (Світлодіодна лінійка швидкості)

Складається з 10 світлодіодів, які представляють у відсотках від 10 до 100% діапазон швидкості між параметрами P27 (мінімальна швидкість) і P26 (максимальна швидкість).

<table>
<thead>
<tr>
<th>Світлодіодна лінійка</th>
<th>Стан</th>
</tr>
</thead>
<tbody>
<tr>
<td>Увимкнена</td>
<td>Двигун працює; швидкість відповідає кількості ввімкнених світлодіодів у лінійці (наприклад: 3 ввімкнених світлодіоди = швидкість 30%)</td>
</tr>
<tr>
<td>Перший світлодіод блимає</td>
<td>Двигун працює; швидкість менше абсолютного мінімуму, P27</td>
</tr>
<tr>
<td>Вимкнений</td>
<td>Двигун зупинений</td>
</tr>
</tbody>
</table>

6.3.4 COM (зв’язок)

Стан 1

- Протокол комунікаційної шини — Modbus RTU; для параметра P50 задано значення «Modbus».
- Додатковий комунікаційний модуль не використовується.

<table>
<thead>
<tr>
<th>Світлодіод</th>
<th>Стан</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вимкнений</td>
<td>Агрегат не може виявити дійсних повідомлень Modbus на клемах, передбачених для комунікаційної шини</td>
</tr>
<tr>
<td>Безперервно горить зеленим</td>
<td>Агрегат виявив комунікаційну шину на передбачених клемах і розпізнав правильну адресацію</td>
</tr>
<tr>
<td>Блимає зеленим</td>
<td>Агрегат виявив комунікаційну шину на передбачених клемах, але не розпізнав правильну адресацію</td>
</tr>
<tr>
<td>Безперервно горить зеленим, а потім вимикається</td>
<td>Агрегат не виявив дійсного повідомлення Modbus RTU протягом принаймні 5 секунд</td>
</tr>
<tr>
<td>Безперервно горить зеленим, а потім блимає</td>
<td>Агрегат не розпізнав правильну адресацію протягом принаймні 5 секунд</td>
</tr>
</tbody>
</table>

Стан 2

- Протокол комунікаційної шини — BACnet MS/TP; для параметра P50 задано значення «BACnet».
- Додатковий комунікаційний модуль не використовується.

<table>
<thead>
<tr>
<th>Світлодіод</th>
<th>Стан</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вимкнений</td>
<td>Агрегат не отримав дійсних запитів від інших пристроїв BACnet MS/TP протягом принаймні 5 секунд</td>
</tr>
<tr>
<td>Безперервно горить</td>
<td>Агрегат обмінюється інформацією з іншим пристроєм BACnet MS/TP</td>
</tr>
</tbody>
</table>

Стан 3

Додатковий комунікаційний модуль використовується.

<table>
<thead>
<tr>
<th>Світлодіод</th>
<th>Стан</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вимкнений</td>
<td>RS485 або бездротове з’єднання несправне або відсутнє</td>
</tr>
<tr>
<td>Блимає</td>
<td>Агрегат обмінюється інформацією з комунікаційним модулем</td>
</tr>
</tbody>
</table>

6.3.5 Одніниця вимірювання

<table>
<thead>
<tr>
<th>Увімкнений світлодіод</th>
<th>Активне вимірювання</th>
<th>Примітки</th>
</tr>
</thead>
<tbody>
<tr>
<td>10xRPM</td>
<td>Швидкість обертання робочого колеса</td>
<td>На дисплеї відображається швидкість в об/хв х 10</td>
</tr>
<tr>
<td>BAR</td>
<td>Гідравлічний напір</td>
<td>На дисплеї відображається значення напору в барах</td>
</tr>
<tr>
<td>PSI</td>
<td></td>
<td>На дисплеї відображається значення напору в фунтах на кв. дюйм</td>
</tr>
</tbody>
</table>

uk — Переклад оригінальної інструкції
6.4 Дисплей

6.4.1 Головний екран

<table>
<thead>
<tr>
<th>Дисплей</th>
<th>Режим</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Контакти 11 і 12 (див. п. 5.4) не замкнені накоротко. Примітка: має нижчий пріоритет відображення, ніж режим STOP (Зупинка).</td>
</tr>
<tr>
<td>STOP</td>
<td>STOP</td>
<td>Насос зупинений вручну. Якщо насос увімкнений після задання P04 = OFF (Вимк.) (див. п. 6.5.1), він зупиняється таким чином, що двигун не працює, а на дисплеї блимає STP.</td>
</tr>
<tr>
<td>STP</td>
<td>STP</td>
<td>Щоб зупинити насос вручну:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Приклад А. Режим керування CPP/PPP із початковим потрібним значенням (напором) 1,00 бар і мінімальним значенням 0,5 бар: 4.20 BAR → натисніть → STP один раз.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Приклад В. Режим керування ACT з початковим потрібним значенням (швидкістю) 200 об/хв x 10 і мінімальним значенням 80 об/хв x 10: 200 10xRPM → натисніть → STP один раз.</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Насос увімкнений; двигун запускається згідно з обраним режимом керування. Він відображається протягом кількох секунд, коли контакти 11 і 12 (див. п. 5.4) замкнені накоротко, а насос не перебуває в режимі STOP (Зупинка). Щоб вручну перевести насос у режим ON (Увімк.):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Приклад А. Режим керування CPP/PPP із досяганням потрібного значення (напору) 1,00 бар, починаючи з мінімального значення 0,5 бар, після ручної зупинки: STP → натисніть → ON → один раз, і через кілька секунд... → 4.20 BAR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Приклад В. Режим керування ACT з досяганням потрібного значення (швидкістю) 200 об/хв x 10, починаючи з мінімального значення 80 об/хв x 10 після ручної зупинки: STP → натисніть → ON → один раз, і через кілька секунд... → 200 10xRPM.</td>
</tr>
</tbody>
</table>

Коли насос працює, можна відобразити значення фактичного напору та фактичної швидкості:

- Приклад А. Режим керування CPP/PPP із фактичним напором 1,00 бар і відповідною фактичною швидкістю 352 об/хв x 10: 4.20 BAR → натисніть → 852 10XRPМ → через 10 секунд або → H2O BAR. |
| | | - Приклад В. Режим керування ACT з фактичною швидкістю 200 об/хв x 10 і відповідним фактичним напором 2,37 бар: 200 10xRPM → натисніть → 231 BAR → через 10 секунд або → H2O BAR. |

6.4.2 Відображення меню параметрів

Меню параметрів дозволяє:

- вибрати всі параметри (див. п. 6.5);
- здійснити доступ до відображення/редагування параметрів (див. п. 6.2).
<table>
<thead>
<tr>
<th>Параметр</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power on (Вмиkanня живлення)</td>
<td>Якщо після вмикання здійснюється доступ до перегляду меню параметрів за P23 = ON (Увімк.), P20 блімає: $P20 \rightarrow P20$. Вводьте пароль для відображення та зміни параметрів.</td>
</tr>
<tr>
<td>Password timeout (Таймаут пароля)</td>
<td>Якщо за P23 = ON (Увімк.) не буде натиснута жодна кнопка протягом більш ніж 10 хвилин з останнього перегляду меню параметрів, відображення й регулювання параметрів вимикаються. Вводьте пароль знову для відображення та зміни параметрів.</td>
</tr>
<tr>
<td>Parameters Menu (Меню параметрів)</td>
<td>За P23 = OFF (Вимк.) або після введення пароля (P20) можна як відображати, так і редагувати параметри. Під час доступу до меню параметрів на дисплеї буде відображено: $P01 \rightarrow P01 \rightarrow P02 \rightarrow \ldots \rightarrow P69 \rightarrow P69$. Блимаючий параметр указує на можливість вибору.</td>
</tr>
<tr>
<td>Parameters Editing/Visualization (Редагування/відображення параметрів)</td>
<td>Значення параметра можна змінити за допомогою кнопок або комунікаційних протоколів Modbus і BACnet. Під час повернення до меню параметрів індекс параметра, що відображається, автоматично збільшується. Додаткову інформацію див. у п. 6.5.</td>
</tr>
</tbody>
</table>

- Приклад A (P20) від 000 до 066: $P20 \rightarrow P20 \rightarrow \ldots \rightarrow P66 \rightarrow P66 \rightarrow \ldots \rightarrow P21 \rightarrow P21$. Задає бажане значення.
- Приклад 2 (P26) від 360 до 300: $P26 \rightarrow P26 \rightarrow \ldots \rightarrow 360 \rightarrow 360 \rightarrow \ldots \rightarrow P26 \rightarrow P26$. Задає бажане значення.

6.4.3 Відображення сигналів тривоги та помилок

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сигнал тривоги</td>
<td>У випадку сигналу тривоги відповідний код відображається на дисплеї по черзі з головним виглядом. Наприклад: $P0 \rightarrow 356$ (наприклад, BAR (бар)) $P0 \rightarrow 265$ (наприклад, 10xRPM (об/хв x 10)) \ldots Додаткову інформацію див. у п. 6.7.</td>
</tr>
<tr>
<td>Помилка</td>
<td>У випадку помилки на дисплеї відображається відповідний ідентифікаційний код. Наприклад: $P0 \rightarrow 012$ \ldots Додаткову інформацію див. у п. 6.7.</td>
</tr>
</tbody>
</table>

6.5 Параметри програмного забезпечення

Параметри по-різному позначаються в інструкції залежно від їхнього типу:

<table>
<thead>
<tr>
<th>Позначення</th>
<th>Тип параметра</th>
</tr>
</thead>
<tbody>
<tr>
<td>Без позначення</td>
<td>Застосовується до всіх агрегатів</td>
</tr>
<tr>
<td>**</td>
<td>Тільки для читання</td>
</tr>
</tbody>
</table>
6.5.1 Параметри стану

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Одиниця вимірювання</th>
<th>Опис</th>
</tr>
</thead>
</table>
| P01| Required value (Потрібне значення) | бар/фунт./кв. дюйм/об./хв x 10 | Цей параметр показує ДЖЕРЕЛО і ЗНАЧЕННЯ активного потрібного параметра. ДЖЕРЕЛО і ЗНАЧЕННЯ відображаються по черзі з періодичністю 3 секунди. ДЖЕРЕЛА:
 - SP (SP): внутрішнє задане потрібне значення, яке стосується вибраного режиму керування.
 - VL (UL): зовнішнє задане потрібне значення швидкості, яке стосується входу 0—10 В. ЗНАЧЕННЯ може представляти швидкість або напір залежно від вибраного режиму керування. У випадку напору одиниця вимірювання визначається параметром P41. |
| P05| Operating time months (Наробок у місяцях) | год | Сумарна кількість місяців підключення до мережі електроживлення, що додається до P06. |
| P06| Operating time hours (Наробок у годах) | год | Сумарна кількість годин підключення до мережі електроживлення, що додається до P05. |
| P07| Motor Time Months (Наробок двигуна в місяцях) | год | Цей параметр показує сумарну кількість місяців експлуатації, яка додається до P08. |
| P08| Motor time hours (Наробок двигуна в годах) | год | Цей параметр показує сумарну кількість годин експлуатації, яка додається до P07. |
| P09| 1st error (1-ша помилка) | | У цьому параметрі зберігається остання помилка, що відбулася, у хронологічному порядку. Відображувана інформація по черзі перемикається між значеннями:
 - (Exx): xx означає код помилки;
 - (Hyy): yy — час у годах, що стосується до P05-P06, коли відбулася помилка Exx;
 - (Dww): ww — час у дніях, що стосується до P05-P06, коли відбулася помилка Exx;
 - (Uzz): zz — час у тижнях, що стосується до P05-P06, коли відбулася помилка Exx. Приклад відображення: E04 → K10 → d03 → U15 |
| P10| 2nd error (2-га помилка) | | Зберігає передостанню помилку, що відбулася, у хронологічному порядку. Інші характеристики: аналогічно P09. |
| P11| 3rd error (3-тя помилка) | | Зберігає третю від останньої помилку в хронологічному порядку. Інші характеристики: аналогічно P09. |
| P12| 4th error (4-та помилка) | | Зберігає четверту від останньої помилку в хронологічному порядку. Інші характеристики: аналогічно P09. |
6.5.2 Параметри налаштувань

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>P20</td>
<td>Password entering [Введення пароля] [0÷999]</td>
<td>Користувач може ввести тут системний пароль, який дає доступ до всіх параметрів системи: це значення порівнюється з тим, що зберігається в P22. Після введення правильного пароля система залишається в розблокованому стані на 10 хвилин.</td>
</tr>
<tr>
<td>P21</td>
<td>Jog mode [Покроковий режим] [MIN÷MAX*]</td>
<td>Деактивує внутрішній контролер насоса та примусово вмикає фактичний режим керування (ACT); двигун запускається, а значення P21 стає тимчасовим заданим значенням ACT. Його можна змінити шляхом введення нового значення в P21 без підтвердження, інакше це спричинить негайний вихід із тимчасового керування.</td>
</tr>
<tr>
<td>P23</td>
<td>Lock Function [Функція блокування] [Вимк., увімк.]</td>
<td>За допомогою цієї функції користувач може заблокувати чи розблокувати налаштування параметра в головному меню. Коли функцію ввімкнено, введіть пароль P20 для зміни параметрів. За замовчуванням: ON.</td>
</tr>
</tbody>
</table>

6.5.3 Параметри конфігурації приводу

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Одиниця вимірювання</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>Control mode [Режим керування] [0—2]</td>
<td></td>
<td>Цей параметр задає режим керування: ACT=0, CPP=1 та PPP=2 ACT: режим виконавчого пристрою.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Один насос підтримує фіксовану швидкість за будь-якої витрати. ACT завжди намагається мінімізувати розбіжність між заданим значенням швидкості та фактичною швидкістю обертання двигуна.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ЄСС: Постійний тиск, пропорційно-інтегральне керування.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Насос підтримує постійну різницю тиску (різницю між тиском подачі та всмоктування) незалежно від витрати.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Датчик абсолютного тиску не потрібний. Алгоритм керування буде працювати в режимі без датчиків. У будь-якому випадку у якості альтернативи можна буде застосувати зовнішній датчик тиску (підключення див. у п. 4.3.3, конфігурація за допомогою</td>
</tr>
</tbody>
</table>

* Залежно від типу насоса, що використовується
6.5.4 Параметри конфігурації датчика

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Одиниця вимірювання</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>P40</td>
<td>Sensor selection (Выбір датчика) [0÷2]</td>
<td>бар/футн./кв. дюйм</td>
<td>Задає параметри зовнішнього датчика тиску:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Наприклад, випадок датчика немає</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Диференційний датчик 4—20 мА</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Два окремих датчики тиску 4—20 мА</td>
</tr>
<tr>
<td>P41</td>
<td>Pressure Sensor Unit Of Measure [BAR, PSI]</td>
<td>бар/футн./кв. дюйм</td>
<td>Цей параметр задає одиницю вимірювання для датчика тиску. Він впливає на параметри світлодіода відображення напору (див. п. 6.3.4). Величина за замовчуванням: бар.</td>
</tr>
<tr>
<td>P42</td>
<td>Full scale value for pressure Sensor 1 [Значення повної шкали датчика тиску 1] 4—20 мА [0.0÷25.0BAR] / [0.0÷363PSI]</td>
<td>бар/футн./кв. дюйм</td>
<td>Задає значення повної шкали датчика тиску 1 4—20 мА, підключеного до аналогових входів 17 і 18. Значення за замовчуванням: залежно від типу насоса</td>
</tr>
<tr>
<td>P43</td>
<td>Full scale value for pressure Sensor 2 [Значення повної шкали датчика тиску 2] 4—20 мА [0.0÷25.0BAR] / [0.0÷363PSI]</td>
<td>бар/футн./кв. дюйм</td>
<td>Задає значення повної шкали датчика тиску 2 4—20 мА, підключеного до аналогових входів 15 і 16. Значення за замовчуванням: бар.</td>
</tr>
<tr>
<td>P44</td>
<td>Zero Pressure Auto-Calibration</td>
<td>бар/футн./кв. дюйм</td>
<td>Цей параметр дозволяє користувачу виконати початкове автоматичне калібрування датчика тиску.</td>
</tr>
</tbody>
</table>

* Залежно від типу насоса, що використовується
(Автокалібрування нуля тиску)

Він використовується для компенсації зміщення сигналу від датчика за нульовим тиском (через допуски самого датчика тиску).

Процедура:
1. Увійдіть до P44, коли гідравлічна система перебуває під нульовим тиском (без рідини) або коли датчик тиску відключений від трубопроводу: відображається фактичне значення нульового тиску.
2. Запустіть автокалібрування, натиснувши (див. п. 6.2).
3. Наприкінці автокалібрування відобразиться тиск 0 (нульовий) або повідомлення «---» (--), якщо сигнал датчика перебуває за межами допустимого діапазону.

P48 Вхід реле відсутності рідини [DIS, ALR, ERR] (Вимк., Тривога, Помилка)

Вмикає/вимикає керування входом відсутності рідини (див. п. 4.3.3, клеми 13 і 14).

Він визначає поведінку агрегата за вимкненого входу відсутності води, коли контакти реле розімкнені:
- **DIS (DIS)**: агрегат ігнорує інформацію, яка надходить від входу відсутності рідини
- **ALr (ALr)**: агрегат читає вхід відсутності рідини (підключений) і реагує на розмикання контактів автоматичного вимикача, відображаючи на дисплеї сигнал тривоги ротаційного насоса A06, при цьому двигун продовжує працювати
- **Err (Err)**: агрегат читає вхід відсутності рідини (підключений) і реагує на розмикання контактів автоматичного вимикача, зупиняючи двигун і видаючи відповідну помилку E11. Стан помилки скидається, коли контакти реле залишаються знову і двигун запускається.

За замовчуванням: ERR.

6.5.5 Параметри інтерфейсу RS485

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Одиниця вимірювання</th>
<th>Опис</th>
</tr>
</thead>
</table>
| P50 | Communication protocol (Протокол зв’язку) [MOD, BAC] | | Цей параметр вибирає конкретний протокол для порту зв’язку:
| | | | • **MOD (MOD): Modbus RTU**
| | | | • **BAC (BAC): BACnet MS/TP**.
| | | | За замовчуванням: MOD. |
| P51 | Communication protocol - Address (Протокол зв’язку — адреса) [1÷247]/[0÷127] | | Цей параметр задає бажану адресу агрегата при підключенні до зовнішнього пристрою залежно від протоколу, вибраного в P50:
| | | | • **MOD: будь-яке значення в діапазоні 1÷247;**
| | | | • **BAC: будь-яке значення в діапазоні 0÷127.** |
| P52 | Comm Protocol – BAUDRATE (Протокол зв’язку — швидкість передачі даних) [4,8, 9,6, 14,4, 19,2, 38,4, 56,0, 57,6 KBPS (кбіт/с)] | кбіт/с | Цей параметр задає бажану швидкість передачі даних для порту зв’язку.
| | | | За замовчуванням: 9,6 кбіт/с. |
6.5.6 Параметри конфігурації випробувального прогону

Випробувальний прогін — функція, яка запускає насос після останньої зупинки, щоб запобігти його забиванню.

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Одиниця вимірювання</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>P65</td>
<td>Test Run — Time Start (Випробувальний прогін — час пуску) [0+100]</td>
<td>год</td>
<td>Цей параметр задає час після останньої зупинки насоса, через який запускається випробувальний прогін. За замовчуванням: 100 год.</td>
</tr>
<tr>
<td>P67</td>
<td>Test Run — Time Duration (Випробувальний прогін — тривалість) [0+180]</td>
<td>с</td>
<td>Цей параметр задає тривалість випробувального прогону. За замовчуванням: 10 с.</td>
</tr>
</tbody>
</table>

6.5.7 Спеціальні параметри

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Одиниця вимірювання</th>
<th>Опис</th>
</tr>
</thead>
<tbody>
<tr>
<td>P68</td>
<td>Default Values Reload (Перезавантаження значень за замовчуванням) [NO, RES]</td>
<td></td>
<td>Якщо задати для цього параметра RES (Скидання), після підтвердження виконується операція відновлення заводських налаштувань, яка завантажує значення параметрів за замовчуванням.</td>
</tr>
<tr>
<td>P69</td>
<td>Avoid Frequent Parameters Saving [NO, YES] (Уникати частого зберігання параметрів) (Hi, Tak)</td>
<td></td>
<td>Цей параметр обмежує частоту зберігання агрегатом потрібного значення Р02 у пам’яті EEPROM для подовження строку служби пам’яті. Це може бути особливо корисно у випадку використання агрегата спільно з керуючими пристроями систем керування будинками, які вимагають безперервного змінення цього значення для точного регулювання. За замовчуванням: Hi.</td>
</tr>
</tbody>
</table>
6.6 Технічні відомості

6.6.1 Приклад: режим керування ACT з аналоговим входом 0—10 В

Графік

![Рисунок 15. Графік режиму керування ACT](https://via.placeholder.com/150)

Таблиця 12: Опис

<table>
<thead>
<tr>
<th>Сіра ділянка</th>
<th>→ Поріг визначення відсутності напруги на вході</th>
</tr>
</thead>
<tbody>
<tr>
<td>Швидкість [об/хв]</td>
<td>→ Фактична швидкість, пов’язана зі значенням напруги аналогового входу 0—10 В (див. п. 4.3.3, таблиця 8, контакти 7 і 8)</td>
</tr>
<tr>
<td>Макс.</td>
<td>→ P26 (Задане значення макс. швидкості в об/хв)</td>
</tr>
<tr>
<td>Мін.</td>
<td>→ P27 (Задане значення мін. швидкості в об/хв)</td>
</tr>
<tr>
<td>Задане значення</td>
<td>→ Приклад фактичної швидкості, пов’язаної з конкретним значенням напруги Vset</td>
</tr>
<tr>
<td>Чер</td>
<td>→ Вхідна напруга, за якої двигун переходить у черговий режим</td>
</tr>
<tr>
<td>Vin [В]</td>
<td>→ Значення вхідної напруги для керування насосом у режимі ACT. Різні пороги керуються насосом, від невиявлення до макс. швидкості</td>
</tr>
</tbody>
</table>

Детальнішу інформацію про режим керування й параметри регулювання ACT див. у п. 6.5.3.
7 обслуговування виробу.

Заходи безпеки

НЕБЕЗПЕЧНО: Небезпека ураження електричним струмом.

- Перш ніж намагатися використати агрегат, переконайтеся, що він вимкнений, і що насос і панель керування не можуть бути ввімкнені ненавмисно. Це також стосується допоміжного контуру керування насоса.
- Перед виконанням будь-яких робіт на агрегаті необхідно, щоб мережеве електроживлення та будь-які інші джерела вхідної напруги були відключені протягом мінімальних проміжків часу, указаних у таблиці 9 (конденсатори в проміжних ланцюгах повинні розряджатися через вбудовані розрядні резистори).

1. Переконайтеся, що вентилятор охолодження та вентиляційні решітки вільні від пилу.
2. Переконайтеся, що температура зовнішнього середовища перебуває в указаних для агрегата межах.
3. Усі модифікації агрегата повинні виконуватися виключно кваліфікованим персоналом.
4. Перед виконанням будь-яких робіт переконайтеся, що всі джерела живлення відключені. Завжди дотримуйтесь інструкцій до насоса та двигуна.

Керування параметрами й функціями

У випадку змін у гідравлічній системі:
1. Переконайтеся в правильності всіх функцій та параметрів.
2. За необхідності відрегулюйте всі функції та параметри.
8 Пошук та усунення несправностей

У випадку сигналу тривоги або помилки на дисплеї відображається ідентифікаційний код, а світлодіод стану вмикається (також див. п. 6.3.2). У випадку кількох сигналів тривоги або помилок на дисплей відображається головна з них. Сигнали тривоги та помилки:
• зберігаються з датою й часом;
• можуть бути скинуті шляхом вимикання агрегату принаймні на 1 хвилину.
Помилки спричиняють спрацювання реле стану на таких штирках клемної коробки:
• однофазна версія: штирки 4 й 5;
• трифазна версія: штирки 24 й 25.

8.1 Коди сигналів тривоги

Таблиця 14: Коди сигналів тривоги

<table>
<thead>
<tr>
<th>Код</th>
<th>Опис</th>
<th>Причина</th>
<th>Спосіб усунення</th>
</tr>
</thead>
</table>
| A03 | Погіршення характеристик | Надто висока температура | • Зменшіть кімнатну температуру
• Зменшіть температуру води
• Зменшіть навантаження |
| A05 | Сигнал тривоги пам'яті даних | Пам'яті даних несправна | 1. Скиньте параметри за замовчуванням за допомогою параметра Р68
2. Почекайте 10 с
3. Знову запустіть насос
Якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб'ютора |
| A06 | Сигнал тривоги LOW | Виявлена відсутність води (якщо Р48= ALR) | Перевірте рівень води в системі |
| A15 | Збій запису EEPROM | Пам'яті даних пошкоджена | Зупиніть насос на 5 хвилин, а потім запустіть знову; якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб'ютора |
| A20 | Внутрішній сигнал тривоги | | Зупиніть насос на 5 хвилин, а потім запустіть знову; якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб'ютора |

8.2 Коди помилок

Таблиця 15: Коди помилок

<table>
<thead>
<tr>
<th>Код</th>
<th>Опис</th>
<th>Причина</th>
<th>Спосіб усунення</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>Помилка внутрішнього зв'язку</td>
<td>Втрата внутрішнього зв'язку</td>
<td>Зупиніть насос на 5 хвилин, а потім запустіть знову; якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб'ютора</td>
</tr>
</tbody>
</table>
| E02 | Помилка перевантаження двигуна | Високий струм двигуна
• Споживаний струм двигуна надто високий | Зупиніть насос на 5 хвилин, а потім запустіть знову; якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб'ютора |
| E03 | Помилка перенапруги шини постійного струму | Перенапруга шини постійного струму
• Зовнішні умови спричиняють роботу насоса від генератора | Перевірте:
• конфігурацію системи;
• положення й цілісність зворотного клапана або клапана односторонньої дії. |
<table>
<thead>
<tr>
<th>Код</th>
<th>Опис</th>
<th>Причина</th>
<th>Спосіб усунення</th>
</tr>
</thead>
<tbody>
<tr>
<td>E04</td>
<td>Ротор заблокований</td>
<td>• Зупинка двигуна</td>
<td>• Переконайтесь, що сторонні предмети не заважають обертанню насоса</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Втрата синхронізації ротора або блокування ротора сторонніми матеріалами</td>
<td>• Зупиніть насос на 5 хвилин, а потім запустіть знову Якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб'ютора</td>
</tr>
<tr>
<td>E05</td>
<td>Помилка пам’яті даних EEPROM</td>
<td>Пам’ять даних EEPROM несправна</td>
<td>Зупиніть насос на 5 хвилин, а потім запустіть знову; якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб’ютора</td>
</tr>
<tr>
<td>E06</td>
<td>Помилка напруги в мережі</td>
<td>Напруга живлення поза робочим діапазоном</td>
<td>Перевірте: • напругу; • підключення до електричної системи</td>
</tr>
<tr>
<td>E07</td>
<td>Помилка температури обмотки двигуна</td>
<td>Спрацювання теплового захисту двигуна</td>
<td>Перевірте наявність забруднень поруч із робочим колесом і ротором. За необхідності видаліть • Перевірте стан установки та температуру води й повітря • Почекайте, поки двигун охолоне • Якщо помилку не усунуто, зупиніть насос на 5 хвилин, а потім запустіть знову Якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб’ютора</td>
</tr>
<tr>
<td>E08</td>
<td>Помилка температури блока живлення</td>
<td>Спрацювання теплового захисту частотного перетворювача</td>
<td>Перевірте стан установки та температуру повітря</td>
</tr>
<tr>
<td>E09</td>
<td>Загальна помилка апаратного забезпечення</td>
<td>Помилка апаратного забезпечення</td>
<td>Зупиніть насос на 5 хвилин, а потім запустіть знову; якщо проблему не усунуто, зверніться до компанії Xylem або вповноваженого дистриб’ютора</td>
</tr>
<tr>
<td>E10</td>
<td>Помилка роботи без рідини</td>
<td>Виявлена робота без рідини</td>
<td>Перевірте наявність витоків у системі та заповніть її рідиною</td>
</tr>
<tr>
<td>E11</td>
<td>Помилка LOW</td>
<td>Виявлена відсутність води (якщо P48= ERR)</td>
<td>Перевірте рівень води в системі</td>
</tr>
<tr>
<td>E12</td>
<td>Помилка датчика тиску</td>
<td>Відсутність датчика тиску (відсутня в режимі ACT)</td>
<td>Перевірте стан з’єднувальних кабелів датчика</td>
</tr>
<tr>
<td>E14</td>
<td>Помилка низького тиску</td>
<td>Тиск нижче мінімального порогу (відсутня в режимі ACT)</td>
<td>Перевірте значення параметрів P45 і P46</td>
</tr>
<tr>
<td>E15</td>
<td>Обрив однієї фази</td>
<td>Одна з трьох фаз електроживлення відсутня (тільки для трифазних версій)</td>
<td>Перевірте підключення до мережі електроживлення.</td>
</tr>
<tr>
<td>E31</td>
<td>Помилка датчика тиску 1</td>
<td>Датчик тиску 1 не виявлений</td>
<td>Перевірте стан з’єднувальних кабелів датчика</td>
</tr>
<tr>
<td>E32</td>
<td>Помилка датчика тиску 2</td>
<td>Датчик тиску 2 не виявлений</td>
<td>Перевірте стан з’єднувальних кабелів датчика</td>
</tr>
</tbody>
</table>

Див. також п. 6.3.2 і п. 6.4.3.
Технічні дані

Таблиця 16: Електричні, екологічні та монтажні технічні характеристики

<table>
<thead>
<tr>
<th>Модель приводу e-SM</th>
<th>103</th>
<th>105</th>
<th>107</th>
<th>111</th>
<th>115</th>
<th>303</th>
<th>305</th>
<th>307</th>
<th>311</th>
<th>315</th>
<th>322</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вхід</td>
<td></td>
</tr>
<tr>
<td>Вхідна частота [Гц]</td>
<td>50/60 ±2</td>
<td></td>
</tr>
<tr>
<td>Мережеве електрозвивлення</td>
<td>LN</td>
<td>L1 L2 L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Номінальна вхідна напруга [В]</td>
<td>208÷240 ±10%</td>
<td>208÷240 / 380÷460 ±10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Максимальний споживаний струм (змінний) за безперервної роботи (S1) [А]</td>
<td></td>
</tr>
<tr>
<td>Клас ефективності системи електричного приводу</td>
<td></td>
<td>IES2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вихід</td>
<td></td>
</tr>
<tr>
<td>Мін.÷макс. швидкість [об/хв]</td>
<td>800÷3600</td>
<td></td>
</tr>
<tr>
<td>Струм витоку [мА]</td>
<td>< 3,5</td>
<td></td>
</tr>
<tr>
<td>Допоміжний вхід-вихід імпульсного випрямлення 15 В пост. струму [мА]</td>
<td></td>
<td>Lmax < 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Реле сигналу відмови</td>
<td>1 x HP Vmax < 250 (В змін. струму) , Lmax < 2 [А]</td>
<td></td>
</tr>
<tr>
<td>Реле стану двигуна</td>
<td>-</td>
<td>1 x HP Vmax < 250 (В змін. струму) , Lmax < 2 [А]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMS (електромагнітна сумісність)</td>
<td></td>
</tr>
<tr>
<td>Звуковий тиск LpA [дБ(A)] за [об/хв]</td>
<td>< 62 @3000</td>
<td></td>
</tr>
<tr>
<td>Клас ізоляції</td>
<td>155 F</td>
<td></td>
</tr>
<tr>
<td>Клас захисту</td>
<td>IP 55, тип корпусу 1</td>
<td></td>
</tr>
<tr>
<td>Відносна вологість (зберігання й експлуатація)</td>
<td>5—95%</td>
<td></td>
</tr>
<tr>
<td>Температура зберігання [°C] /[°F]</td>
<td>-25÷65 (-13÷149)</td>
<td></td>
</tr>
<tr>
<td>Робоча температура [°C] /[°F]</td>
<td>-20÷50 (-4÷122)</td>
<td></td>
</tr>
<tr>
<td>Забруднення повітря</td>
<td>Ступінь забруднення 2</td>
<td></td>
</tr>
<tr>
<td>Висота встановлення над рівнем моря [м] /[футі]</td>
<td>< 1000 / 3280</td>
<td></td>
</tr>
</tbody>
</table>

Захищає виріб від прямого сонячного проміння й дощу

На більшій висоті може відбутися погіршення робочих характеристик
9.1 Розміри й маса

Рисунок 16. Розміри
Таблиця 17: Розміри й маса

<table>
<thead>
<tr>
<th>Модель</th>
<th>Маса нетто (двигун + привід) [кг]</th>
<th>B1</th>
<th>B4</th>
<th>B5</th>
<th>D3</th>
<th>E1</th>
<th>E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESM90R...LNEE</td>
<td></td>
<td>7.4</td>
<td>9</td>
<td>13</td>
<td>14.4</td>
<td>16</td>
<td>376</td>
</tr>
<tr>
<td>ESM90RS8...LNEE</td>
<td></td>
<td>7.3</td>
<td>8.8</td>
<td>12.8</td>
<td>14.2</td>
<td>15.8</td>
<td>343</td>
</tr>
<tr>
<td>ESM90R...B14-SVE</td>
<td></td>
<td>7.5</td>
<td>9</td>
<td>13.1</td>
<td>14.5</td>
<td>16</td>
<td>292</td>
</tr>
<tr>
<td>ESM90R...B5</td>
<td></td>
<td>7.5</td>
<td>9</td>
<td>13.1</td>
<td>14.5</td>
<td>16</td>
<td>292</td>
</tr>
<tr>
<td>ESM80...HMHA 80...HMHA US 80...HMHA EU</td>
<td></td>
<td>7.5</td>
<td>9</td>
<td>13</td>
<td>14.5</td>
<td>16</td>
<td>263</td>
</tr>
<tr>
<td>ESM80...HMHB 80...HMHB US 80...HMHB EU</td>
<td></td>
<td>7.6</td>
<td>9.2</td>
<td>13.2</td>
<td>14.6</td>
<td>16.1</td>
<td>268</td>
</tr>
<tr>
<td>ESM80...HMVB 80...HMVB US 80...HMVB EU</td>
<td></td>
<td>7.4</td>
<td>8.9</td>
<td>13</td>
<td>14.4</td>
<td>16</td>
<td>268</td>
</tr>
<tr>
<td>ESM80...HMHC 80...HMHC US 80...HMHC EU</td>
<td></td>
<td>7.9</td>
<td>9.4</td>
<td>13.4</td>
<td>14.8</td>
<td>16.4</td>
<td>272</td>
</tr>
<tr>
<td>ESM80...HMVC 80...HMVC US 80...HMVC EU</td>
<td></td>
<td>7.6</td>
<td>9.1</td>
<td>13.2</td>
<td>14.6</td>
<td>16.2</td>
<td>272</td>
</tr>
<tr>
<td>ESM80...BG</td>
<td></td>
<td>7.3</td>
<td>8.8</td>
<td>12.9</td>
<td>14.3</td>
<td>15.9</td>
<td>282</td>
</tr>
<tr>
<td>ESM90R...56J</td>
<td></td>
<td>7.5</td>
<td>9.1</td>
<td>13</td>
<td>14.5</td>
<td>16.1</td>
<td>307</td>
</tr>
<tr>
<td>ESM90R...56C</td>
<td></td>
<td>7.2</td>
<td>8.8</td>
<td>12.6</td>
<td>14.3</td>
<td>15.8</td>
<td>294</td>
</tr>
</tbody>
</table>

... = 103, 105, 111, 115, 303, 305, 307, 311, 315, 322
* = опору двигуна не знайдено
10 Заяви

10.1 Декларація про відповідність нормам ЕЕС (Переклад)

Xylem Service Italia S.R.L. зі штаб-квартирою в Via Vittorio Lombardi 14 - 36075 Montecchio Maggiore VI - Italy цим заявляє, що наступний продукт:

«лінійний електричний насосний агрегат із вбудованим приводом із регульованою швидкістю, із датчиками тиску або без них (див. наліпку на першій сторінці)»

застосовується відповідним положенням таких директив Європейського Союзу:

- Директива по машинному обладнанню 2006/42 / ЕЕС (ДОДАТОК ІІ - фізична або юридична особа, уповноважена скласти технічний файлик: Xylem Service Italia S.r.l.)
- Директива про екодизайн 2009/125/ EEC, регламент (EU) № 547/2012 (водяні насоси), за наявності маркування MEI

і наступним технічним стандартам:

Montecchio Maggiore, 22/03/2017
Amedeo Valente
(Начальник відділу розробок і конструкторсько-дослідницького центру)

ред. 02

10.2 Заява про відповідність нормам EU (№ EMCD24)

1. Модель апарату/Виріб:
 див. наліпку на першій сторінці
2. Назва й адреса компанії-виробника:
 Xylem Service Italia S.r.l.
 Via Vittorio Lombardi 14
 36075 Montecchio Maggiore VI
 Італія
3. Ця декларація відповідності видана під виключну відповідальність виробника.
4. Об’єкт декларації:
 «лінійний електричний насосний агрегат із вбудованим приводом із регульованою швидкістю, із датчиками тиску або без них (див. наліпку на першій сторінці)»
5. Описаний об’єкт декларації відповідає вимогам відповідного гармонізаційного законодавства Євросоюзу:
 Директива 2014/30/EU від 26 лютого 2014 р. (електромагнітна сумісність)
6. Посилання на використовувані відповідні гармонізовані стандарти або інші технічні умови щодо заявленої сумісності:
7. Орган технічної експертизи:
8. Додаткова інформація:

Підписано від імені та за дорученням: Xylem Service Italia S.r.l.
Montecchio Maggiore, 22/03/2017
Amedeo Valente
(Начальник відділу розробок і конструкторсько-дослідницького центру)
ред. 01

Lowara — торгівельний знак компанії Xylem Inc. або однієї з її дочірніх компаній.